Skip to main content

Nano-Router Design for Nano-Communication in Single Layer Quantum Cellular Automata

  • Conference paper
  • First Online:
Book cover Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

Quantum dot Cellular Automata(QCA) is a new electronics paradigm for information technology and communication. It has been recognized as one of the revolutionary nano-scale computing devices. In this work, we have selected few basic gates using QCA to develop a 4: 4 router. The main function of this design is to transfer information from four input ports through a DEMUX and receive this information at the four different receiver port. The information that has been provided is being routed via crossbar in the present study. We use a parallel to serial converter to receive the information at the receiver port. This router has been implemented with less clock delay and less QCA, which results into an efficient router comparing to any other router. This Nano-router can be used for distributed computing. The QCA Designer Software is used for designing and simulating the circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Das, S., De, D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization. In: Radar, Communication and Computing (ICRCC), pp. 43–47. IEEE (2012)

    Google Scholar 

  2. Das, J.C., Purkayastha, T., De, D.: Reversible nanorouter using QCA for nanocommncation. Nanomat. Energy 5(1), 28–42 (2016)

    Article  Google Scholar 

  3. Sardinha, L.H., Costa, A.M., Neto, O.P.V., Vieira, L.F., Vieira, M.A.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31(12), 825–834 (2013)

    Article  Google Scholar 

  4. Iqbal, J., Khanday, F.A., Shah, N.A.: Design of quantum-dot cellular automata (QCA) based modular 2 n − 1−2n MUX-DEMUX. In: Multimedia, Signal Processing and Communication Technologies (IMPACT), pp. 189–193. IEEE (2013)

    Google Scholar 

  5. Shin, S.H., Jeon, J.C., Yoo, K.Y.: Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata. Int. J. Control Autom. 7(4), 153–164 (2014)

    Article  Google Scholar 

  6. Deb, A., Das, D.K.: A regular network of symmetric functions in quantum-dot cellular automata. In: 18th International Symposium VLSI Design and Test, pp. 1–6. IEEE (2014)

    Google Scholar 

  7. Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Modi, S., Tomar, S.A.: Logic gate implementations for quantum dot cellular automata. In: Computational Intelligence and Communication Networks (CICN). IEEE (2010)

    Google Scholar 

  9. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  10. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  11. Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14(4), 648–656 (2015)

    Article  Google Scholar 

  12. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  13. Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S., Bernstein, G.H.: Demonstration of a six-dot quantum cellular automata system. Appl. Phys. Lett. 72(17), 2179–2181 (1998)

    Article  Google Scholar 

  14. Frost, S.E., Rodrigues, A.F., Janiszewski, A.W., Rausch, R.T., Kogge, P.M.: Memory in motion: a study of storage structures in QCA. In: First Workshop on Non-Silicon Computing, vol. 2 (2002)

    Google Scholar 

  15. Narasimha, M.J.: The Batcher-banyan self-routing network: universality and simplification. IEEE Trans. Commun. 36(10), 1175–1178 (1988)

    Article  Google Scholar 

  16. Das, J.C., De, D.: Shannon’s expansion theorem-based multiplexer synthesis using QCA. Nanomat. Energy 5(1), 53–60 (2016)

    Article  Google Scholar 

  17. Iyer, S., McKeown, N.W.: Analysis of the parallel packet switch architecture. IEEE/ACM Trans. Netw. (TON) 11(2), 314–324 (2003)

    Article  Google Scholar 

  18. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    Article  Google Scholar 

  19. Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science 287(5457), 1466–1468 (2000)

    Article  Google Scholar 

  20. Kamaraj, A., Marichamy, P., Abinaya, M.: Design of reversible logic based area efficient multilayer architecture router in QCA. Int. J. Appl. Eng. Res. 10(1), 140–144 (2015)

    Google Scholar 

  21. Das, J.C., De, D.: Quantum dot-cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inf. Technol. Electron. Eng. 17(3), 224–236 (2016)

    Google Scholar 

  22. Das, J.C., De, D.: Reversible comparator design using quantum dot-cellular automata. IETE J. Res. 62(3), 323–330 (2016)

    Article  Google Scholar 

  23. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. In: Microsystem Technologies, pp. 1–14 (2016)

    Google Scholar 

  24. Das, J.C., De, D.: Optimized design of reversible gates in quantum dot-cellular automata: a review. Rev. Theoret. Sci. 4(3), 279–286 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

Authors are grateful to TEQIP-II, WBUT for providing financial assistance to complete this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Das, B., Das, J.C., De, D., Paul, A.K. (2017). Nano-Router Design for Nano-Communication in Single Layer Quantum Cellular Automata. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer, Singapore. https://doi.org/10.1007/978-981-10-6430-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6430-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6429-6

  • Online ISBN: 978-981-10-6430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics