

US 20060286124A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0286124 A1

Burt et al.

(54) VACCINE COMPOSITIONS AND METHODS OF TREATING CORONAVIRUS INFECTION

(75) Inventors: David S. Burt, Dollard des Ormeaux
(CA); Mark A. Reddish, Woodinville,
WA (US); Mary ChaoHong Hu,
Bothell, WA (US); George H. Lowell,
Hampstead (CA); David Hugh Jones,
Baie d'Urfe (CA)

Correspondence Address: SEED INTELLECTUAL PROPERTY LAW GROUP PLLC 701 FIFTH AVE SUITE 5400 SEATTLE, WA 98104 (US)

- (73) Assignee: **ID Biomedical Corporation of Quebec**, Laval (CA)
- (21) Appl. No.: 11/173,793
- (22) Filed: Jun. 30, 2005

Related U.S. Application Data

(60) Provisional application No. 60/584,704, filed on Jun. 30, 2004.

(10) Pub. No.: US 2006/0286124 A1 (43) Pub. Date: Dec. 21, 2006

Publication Classification

(51)	Int. Cl.	
	A61K 39/215	(2006.01)
	C12Q 1/70	(2006.01)
	C07H 21/04	(2006.01)
	C12P 21/06	(2006.01)
	C12N 15/86	(2006.01)
	C07K 14/165	(2006.01)
(52)	U.S. Cl	
		435/325; 530/350; 536/23.72;
		435/456

(57) ABSTRACT

The present disclosure relates to compositions and methods for treating or preventing coronavirus infections. For example, compositions are provided that comprise a coronavirus S protein or N protein, fragment, or variant thereof, capable of eliciting a protective humoral and/or cell-mediated immune response, which compositions are useful for treating or preventing infection by coronavirus, such as the causative agent of SARS. Also, coronavirus S protein and N protein immunogen compositions are provided that include an adjuvant, such as Proteosome or Protollin, which may be used for treating or preventing infection caused by a coronavirus, such as a SARS coronavirus.

FIG. 1

SARS Spike (S protein) Sequence

atg ttt att ttc tta tta ttt ctt act ctc act agt ggt agt gac ctt Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu gac cgg tgc acc act ttt gat gat gtt caa gct cct aat tac act caa Asp Arg Cys Thr Thr Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln cat act toa tot atg agg ggg gtt tac tat cot gat gaa att ttt aga His Thr Ser Ser Met Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg tca gac act ctt tat tta act cag gat tta ttt ctt cca ttt tat tct Ser Asp Thr Leu Tyr Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser aat gtt aca ggg ttt cat act att aat cat acg ttt ggc aac cct gtc Asn Val Thr Gly Phe His Thr Ile Asn His Thr Phe Gly Asn Pro Val ata cct ttt aag gat ggt att tat ttt gct gcc aca gag aaa tca aat Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn gtt gtc cgt ggt tgg gtt ttt ggt tct acc atg aac aac aag tca cag Val Val Arg Gly Trp Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln tcg gtg att att att aac aat tct act aat gtt gtt ata cga gca tgt Ser Val Ile Ile Ile Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys aac ttt gaa ttg tgt gac aac cct ttc ttt gct gtt tct aaa ccc atg Asn Phe Glu Leu Cys Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met ggt aca cag aca cat act atg ata ttc gat aat gca ttt aat tgc act Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr ttc gag tac ata tct gat gcc ttt tcg ctt gat gtt tca gaa aag tca Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser ggt aat ttt aaa cac tta cga gag ttt gtg ttt aaa aat aaa gat ggg Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly ttt ctc tat gtt tat aag ggc tat caa cct ata gat gta gtt cgt gat Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp FIG. 4A

cta cct tct ggt ttt aac act ttg aaa cct att ttt aag ttg cct ctt Leu Pro Ser Gly Phe Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu ggt att aac att aca aat ttt aga gcc att ctt aca gcc ttt tca cct Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro get caa gae att tgg gge acg tea get gea gee tat ttt gtt gge tat Ala Gln Asp Ile Trp Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr tta aag cca act aca ttt atg ctc aag tat gat gaa aat ggt aca atc Leu Lys Pro Thr Thr Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile aca gat gct gtt gat tgt tct caa aat cca ctt gct gaa ctc aaa tgc Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys tct gtt aag agc ttt gag att gac aaa gga att tac cag acc tct aat Ser Val Lys Ser Phe Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn ttc agg gtt gtt ccc tca gga gat gtt gtg aga ttc cct aat att aca Phe Arg Val Val Pro Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr aac ttg tgt cct ttt gga gag gtt ttt aat gct act aaa ttc cct tct Asn Leu Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser gtc tat gca tgg gag aga aaa aaa att tct aat tgt gtt gct gat tac Val Tyr Ala Trp Glu Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr tet gtg etc tae aac tea aca ttt ttt tea ace ttt aag tge tat gge Ser Val Leu Tyr Asn Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly gtt tet gee act aag ttg aat gat ett tge tte tee aat gte tat gea Val Ser Ala Thr Lys Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala gat tot ttt gta gto aag gga gat gat gta aga caa ata gog coa gga Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly caa act ggt gtt att gct gat tat aat tat aaa ttg cca gat gat ttc Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe atg ggt tgt gtc ctt gct tgg aat act agg aac att gat gct act tca Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser

FIG. 4B

act ggt aat tat aat tat aaa tat agg tat ctt aga cat ggc aag ctt Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu agg ccc ttt gag aga gac ata tct aat gtg cct ttc tcc cct gat ggc Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly aaa cet tge ace cea cet get ett aat tgt tat tgg cea tta aat gat Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp tat ggt ttt tac acc act act ggc att ggc tac caa cct tac aga gtt Tyr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val gta gta ctt tct ttt gaa ctt tta aat gca ccg gcc acg gtt tgt gga Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly cca aaa tta tcc act gac ctt att aag aac cag tgt gtc aat ttt aat Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn ttt aat gga ctc act ggt act ggt gtg tta act cct tct tca aag aga Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg ttt caa cca ttt caa caa ttt ggc cgt gat gtt tct gat ttc act gat Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp tcc gtt cga gat cct aaa aca tct gaa ata tta gac att tca cct tgc Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys gct ttt ggg ggt gta agt gta att aca cct gga aca aat gct tca tct Ala Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser gaa gtt gct gtt cta tat caa gat gtt aac tgc act gat gtt tct aca Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr gca att cat gca gat caa ctc aca cca gct tgg cgc ata tat tct act Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr gga aac aat gta ttc cag act caa gca ggc tgt ctt ata gga gct gag Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu cat gtc gac act tct tat gag tgc gac att cct att gga gct ggc att His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile

FIG. 4C

tgt Cys	gct Ala	agt Ser	tac Tyr 660	cat His	aca Thr	gtt Val	tct Ser	tta Leu 665	tta Leu	cgt Arg	agt Ser	act Thr	agc Ser 670	caa Gln	aaa Lys	2016
tct Ser	att Ile	gtg Val 675	gct Ala	tat Tyr	act Thr	atg Met	tct Ser 680	tta Leu	ggt Gly	gct Ala	gat Asp	agt Ser 685	tca Ser	att Ile	gct Ala	2064
tac Tyr	tct Ser 690	aat Asn	aac Asn	acc Thr	att Ile	gct Ala 695	ata Ile	cct Pro	act Thr	aac Asn	ttt Phe 700	tca Ser	att Ile	agc Ser	att Ile	2112
act Thr 705	aca Thr	gaa Glu	gta Val	atg Met	cct Pro 710	gtt Val	tct Ser	atg Met	gct Ala	aaa Lys 715	acc Thr	tcc Ser	gta Val	gat Asp	tgt Cys 720	2160
aat Asn	atg Met	tac Tyr	atc Ile	tgc Cys 725	gga Gly	gat Asp	tct Ser	act Thr	gaa Glu 730	tgt Cys	gct Ala	aat Asn	ttg Leu	ctt Leu 735	ctc Leu	2208
caa Gln	tat Tyr	ggt Gly	agc Ser 740	ttt Phe	tgc Cys	aca Thr	caa Gln	cta Leu 745	aat Asn	cgt Arg	gca Ala	ctc Leu	tca Ser 750	ggt Gly	att Ile	2256
gct Ala	gct Ala	gaa Glu 755	cag Gln	gat Asp	cgc Arg	aac Asn	aca Thr 760	cgt Arg	gaa Glu	gtg Val	ttc Phe	gct Ala 765	caa Gln	gtc Val	aaa Lys	2304
caa Gln	atg Met 770	tac Tyr	aaa Lys	acc Thr	cca Pro	act Thr 775	ttg Leu	aaa Lys	tat Tyr	ttt Phe	ggt Gly 780	ggt Gly	ttt Phe	aat Asn	ttt Phe	2352
tca Ser 785	caa Gln	ata Ile	tta Leu	cct Pro	gac Asp 790	cct Pro	cta Leu	aag Lys	cca Pro	act Thr 795	aag Lys	agg Arg	tct Ser	ttt Phe	att Ile 800	2400
gag Glu	gac Asp	ttg Leu	ctc Leu	ttt Phe 805	aat Asn	aag Lys	gtg Val	aca Thr	ctc Leu 810	gct Ala	gat Asp	gct Ala	ggc Gly	ttc Phe 815	atg Met	2448
aag Lys	caa Gln	tat Tyr	ggc Gly 820	gaa Glu	tgc Cys	cta Leu	ggt Gly	gat Asp 825	att Ile	aat Asn	gct Ala	aga Arg	gat Asp 830	ctc Leu	att Ile	2496
tgt Cys	gcg Ala	cag Gln 835	aag Lys	ttc Phe	aat Asn	gga Gly	ctt Leu 840	aca Thr	gtg Val	ttg Leu	cca Pro	cct Pro 845	ctg Leu	ctc Leu	act Thr	2544
gat Asp	gat Asp 850	atg Met	att Ile	gct Ala	gcc Ala	tac Tyr 855	act Thr	gct Ala	gct Ala	cta Leu	gtt Val 860	agt Ser	ggt Gly	act Thr	gcc Ala	2592
act Thr 865	gct Al a	gga Gly	tgġ Trp	aca Thr	ttt Phe 870	ggt Gly	gct Ala	ggc Gly	gct Ala	gct Ala 875	ctt Leu	caa Gln	ata Ile	cct Pro	ttt Phe 880	2640
gct Ala	atg Met	caa Gln	atg Met	gca Ala 885	tat Tyr	agg Arg	ttc Phe	aat Asn	ggc Gly 890	att Ile	gga Gly Л	gtt Val	acc Thr	caa Gln 895	aat Asn	2688
								ГІ	[U .	- 4.	U					

gtt Val	ctc Leu	tat Tyr	gag Glu 900	aac Asn	caa Gln	aaa Lys	caa Gln	atc Ile 905	gcc Ala	aac Asn	caa Gln	ttt Phe	aac Asn 910	aag Lys	gcg Ala	2736
att Ile	agt Ser	caa Gln 915	att Ile	caa Gln	gaa Glu	tca Ser	ctt Leu 920	aca Thr	aca Thr	aca Thr	tca Ser	act Thr 925	gca Ala	ttg Leu	ggc Gly	2784
aag Lys	ctg Leu 930	caa Gln	gac Asp	gtt Val	gtt Val	aac Asn 935	cag Gln	aat Asn	gct Ala	caa Gln	gca Ala 940	tta Leu	aac Asn	aca Thr	ctt Leu	2832
gtt Val 945	aaa Lys	caa Gln	ctt Leu	agc Ser	tct Ser 950	aat Asn	ttt Phe	ggt Gly	gca Ala	att Ile 955	tca Ser	agt Ser	gtg Val	cta Leu	aat Asn 960	2880
gat Asp	atc Ile	ctt Leu	tcg Ser	cga Arg 965	ctt Leu	gat Asp	aaa Lys	gtc Val	gag Glu 970	gcg Ala	gag Glu	gta Val	caa Gln	att Ile 975	gac Asp	2928
agg Arg	tta Leu	att Ile	aca Thr 980	ggc Gly	aga Arg	ctt Leu	caa Gln	agc Ser 985	ctt Leu	caa Gln	acc Thr	tat Tyr	gta Val 990	aca Thr	caa Gln	2976
caa Gln	cta Leu	atc Ile 999	agg Arg 5	gct Ala	gct Ala	gaa Glu	atc Ile 1000	agg Arg)	gct Ala	tct Ser	gct Ala	aat Asn 1009	ctt Leu 5	gct Ala	gct Ala	3024
act Thr	aaa Lys 101(atg Met)	tct Ser	gag Glu	tgt Cys	gtt Val 1015	ctt Leu 5	gga Gly	caa Gln	tca Ser	aaa Lys 1020	aga Arg)	gtt Val	gac Asp	ttt Phe	3072
tgt Cys 1025	gga Gly 5	aag Lys	ggc Gly	tac Tyr	cac His 1030	ctt Leu	atg Met	tcc Ser	ttc Phe	cca Pro 1035	caa Gln 5	gca Ala	gcc Ala	ccg Pro	cat His 1040	3120
ggt Gly	gtt Val	gtc Val	ttc Phe	cta Leu 1045	cat His 5	gtc Val	acg Thr	tat Tyr	gtg Val 105(cca Pro)	tcc Ser	cag Gln	gag Glu	agg Arg 1059	aac Asn	3168
ttc Phe	acc Thr	aca Thr	gcg Ala 1060	cca Pro	gca Ala	att Ile	tgt Cys	cat His 1065	gaa Glu	ggc Gly	aaa Lys	gca Ala	tac Tyr 1070	ttc Phe)	cct Pro	3216
cgt Arg	gaa Glu	ggt Gly 1075	gtt Val	ttt Phe	gtg Val	ttt Phe	aat Asn 1080	ggc Gly	act Thr	tct Ser	tgg Trp	ttt Phe 1085	att Ile	aca Thr	cag Gln	3264
agg Arg	aac Asn 1090	ttc Phe)	ttt Phe	tct Ser	cca Pro	caa Gln 1095	ata Ile	att Ile	act Thr	aca Thr	gac Asp 1100	aat Asn	aca Thr	ttt Phe	gtc Val	3312
tca Ser 1105	gga Gly	aat Asn	tgt Cys	gat Asp	gtc Val 1110	gtt Val	att Ile	ggc Gly	atc Ile	att Ile 1115	aac Asn	aac Asn	aca Thr	gtt Val	tat Tyr 1120	3360

FIG. 4*E*

gat cet etg caa eet gag ett gae tea tte aaa gaa gag etg gae aag Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys tac ttc aaa aat cat aca tca cca gat gtt gat ctt ggc gac att tca Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser ggc att aac gct tct gtc gtc aac att caa aaa gaa att gac cgc ctc Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu aat gag gtc gct aaa aat tta aat gaa tca ctc att gac ctt caa gaa Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu ttg gga aaa tat gag caa tat att aaa tgg cct tgg tat gtt tgg ctc Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu ggc ttc att gct gga cta att gcc atc gtc atg gtt aca atc ttg ctt Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu tgt tgc atg act agt tgt tgc agt tgc ctc aag ggt gca tgc tct tgt Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys ggt tet tge tge aag ttt gat gag gat gae tet gag eea gtt ete aag Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys ggt gtc aaa tta cat tac aca taa Gly Val Lys Leu His Tyr Thr

FIG. 4F

SARS Nucleocapsid (N protein) Sequence

atg Met 1	tct Ser	gat Asp	aat Asn	gga Gly 5	ccc Pro	caa Gln	tca Ser	aac Asn	caa Gln 10	cgt Arg	agt Ser	gcc Ala	ccc Pro	cgc Arg 15	att Ile	48
aca Thr	ttt Phe	ggt Gly	gga Gly 20	ccc Pro	aca Thr	gat Asp	tca Ser	act Thr 25	gac Asp	aat Asn	aac Asn	cag Gln	aat Asn 30	gga Gly	gga Gly	96
cgc Arg	aat Asn	999 Gly 35	gca Ala	agg Arg	cca Pro	aaa Lys	cag Gln 40	cgc Arg	cga Arg	ccc Pro	caa Gln	ggt Gly 45	tta Leu	ccc Pro	aat Asn	144
aat Asn	act Thr 50	gcg Ala	tct Ser	tgg Trp	ttc Phe	aca Thr 55	gct Ala	ctc Leu	act Thr	cag Gln	cat His 60	ggc Gly	aag Lys	gag Glu	gaa Glu	192
ctt Leu 65	aga Arg	ttc Phe	cct Pro	cga Arg	ggc Gly 70	cag Gln	ggc Gly	gtt Val	cca Pro	atc Ile 75	aac Asn	acc Thr	aat Asn	agt Ser	ggt Gly 80	240
cca Pro	gat Asp	gac Asp	caa Gln	att Ile 85	ggc Gly	tac Tyr	tac Tyr	cga Arg	aga Arg 90	gct Ala	acc Thr	cga Arg	cga Arg	gtt Val 95	cgt Arg	288
ggt Gly	ggt Gly	gac Asp	ggc Gly 100	aaa Lys	atg Met	aaa Lys	gag Glu	ctc Leu 105	agc Ser	ccc Pro	aga Arg	tgg Trp	tac Tyr 110	ttc Phe	tat Tyr	336
tac Tyr	cta Leu	gga Gly 115	act Thr	ggc Gly	cca Pro	gaa Glu	gct Ala 120	tca Ser	ctt Leu	ccc Pro	tac Tyr	ggc Gly 125	gct Ala	aac Asn	aaa Lys	384
gaa Glu	ggc Gly 130	atc Ile	gta Val	tgg Trp	gtt Val	gca Ala 135	act Thr	gag Glu	gga Gly	gcc Ala	ttg Leu 140	aat Asn	aca Thr	ccc Pro	aaa Lys	432
gac Asp 145	cac His	att Ile	ggc Gly	acc Thr	cgc Arg 150	aat Asn	cct Pro	aat Asn	aac Asn _.	aat Asn 155	gct Ala	gcc Ala	acc Thr	gtg Val	cta Leu 160	480
caa Gln	ctt Leu	cct Pro	caa Gln	gga Gly 165	aca Thr	aca Thr	ttg Leu	cca Pro	aaa Lys 170	ggc Gly	ttc Phe	tac Tyr	gca Ala	gag Glu 175	gga Gly	528
agc Ser	aga Arg	ggc Gly	ggc Gly 180	agt Ser	caa Gln	gcc Ala	tct Ser	tct Ser 185	cgc Arg	tcc Ser	tca Ser	tca Ser	cgt Arg 190	agt Ser	cgc Arg	576
ggt Gly	aat Asn	tca Ser 195	aga Arg	aat Asn	tca Ser	act Thr	cct Pro 200	ggc Gly	agc Ser	agt Ser	agg Arg	gga Gly 205	aat Asn	tct Ser	cct Pro	624

gct Ala	cga Arg 210	atg Met	gct Ala	agc Ser	gga Gly	ggt Gly 215	ggt Gly	gaa Glu	act Thr	gcc Ala	ctc Leu 220	gcg Ala	cta Leu	ttg Leu	ctg Leu	672
cta Leu 225	gac Asp	aga Arg	ttg Leu	aac Asn	cag Gln 230	ctt Leu	gag Glu	agc Ser	aaa Lys	gtt Val 235	tct Ser	ggt Gly	aaa Lys	ggc Gly	caa Gln 240	720
caa Gln	caa Gln	caa Gln	ggc Gly	caa Gln 245	act Thr	gtc Val	act Thr	aag Lys	aaa Lys 250	tct Ser	gct Ala	gct Ala	gag Glu	gca Ala 255	tct Ser	768
aaa Lys	aag Lys	cct Pro	cgc Arg 260	caa Gln	aaa Lys	cgt Arg	act Thr	gcc Ala 265	aca Thr	aaa Lys	cag Gln	tac Tyr	aac Asn 270	gtc Val	act Thr	816
caa Gln	gca Ala	ttt Phe 275	ggg Gly	aga Arg	cgt Arg	ggt Gly	cca Pro 280	gaa Glu	caa Gln	acc Thr	caa Gln	gga Gly 285	aat Asn	ttc Phe	GJÀ ddd	864
gac Asp	caa Gln 290	gac Asp	cta Leu	atc Ile	aga Arg	caa Gln 295	gga Gly	act Thr	gat Asp	tac Tyr	aaa Lys 300	cat His	tgg Trp	ccg Pro	caa Gln	912
att Ile 305	gca Ala	caa Gln	ttt Phe	gct Ala	cca Pro 310	agt Ser	gcc Ala	tct Ser	gca Ala	ttc Phe 315	ttt Phe	gga Gly	atg Met	tca Ser	cgc Arg 320	960
att Ile	ggc Gĺy	atg Met	gaa Glu	gtc Val 325	aca Thr	cct Pro	tcg Ser	gga Gly	aca Thr 330	tgg Trp	ctg Leu	act Thr	tat Tyr	cat His 335	gga Gly	1008
gcc Ala	att Ile	aaa Lys	ttg Leu 340	gat Asp	gac Asp	aaa Lys	gat Asp	cca Pro 345	caa Gln	ttc Phe	aaa Lys	gac Asp	aac Asn 350	gtc Val	ata Ile	1056
ctg Leu	ctg Leu	aac Asn 355	aag Lys	cac His	att Ile	gac Asp	gca Ala 360	tac Tyr	aaa Lys	aca Thr	ttc Phe	cca Pro 365	cca Pro	aca Thr	gag Glu	1104
cct Pro	aaa Lys 370	aag Lys	gac Asp	aaa Lys	aag Lys	aaa Lys 375	aag Lys	act Thr	gat Asp	gaa Glu	gct Ala 380	cag Gln	cct Pro	ttg Leu	ccg Pro	1152
cag Gln 385	aga Arg	caa Gln	aag Lys	aag Lys	cag Gln 390	ccc Pro	act Thr	gtg Val	act Thr	ctt Leu 395	ctt Leu	cct Pro	gcg Ala	gct Ala	gac Asp 400	1200
atg Met	gat Asp	gat Asp	ttc Phe	tcc Ser 405	aga Arg	caa Gln	ctt Leu	caa Gln	aat Asn 410	tcc Ser	atg Met	agt Ser	gga Gly	gct Ala 415	tct Ser	1248
gct Ala	gat Asp	tca Ser	act Thr 420	cag Gln	gca Ala	taa										1269

FIG. 5*B*

US 2006/0286124 A1

Concentration (pg/ml)

VACCINE COMPOSITIONS AND METHODS OF TREATING CORONAVIRUS INFECTION

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 60/584,704 filed Jun. 30, 2004, which is herein incorporated by reference in its entirety.

STATEMENT OF GOVERNMENT INTEREST

[0002] This invention was made in part with research funds from the National Institutes of Health under Grant No. UC1 AI062600-01. The government may have certain rights in this invention.

STATEMENT REGARDING SEQUENCE LISTING SUBMITTED ON CD-ROM

[0003] The Sequence Listing associated with this application is provided on CD-ROM in lieu of a paper copy, and is hereby incorporated by reference into the application. Three CD-ROMs are provided, each containing identical copies of the sequence listing: CD-ROM No. 1 is labeled COPY 1 and contains the file 404.app.txt which is 177 KB and created on Jun. 30, 2005; CD-ROM No. 2 is labeled COPY 2 and contains the file 404.app.txt which is 177 KB and created on Jun. 30, 2005; CD-ROM No. 3 is labeled CRF (Computer Readable Form) and contains the file 404.app.txt which is 177 KB and created on Jun. 30, 2005.

FIELD OF THE INVENTION

[0004] The present disclosure relates generally to vaccine compositions of coronavirus antigens and, more specifically, to compositions comprising one or more coronavirus immunogens (including S protein, N protein, M protein, and the like) and variants thereof, and uses of such compositions for eliciting a protective immune response to treat or prevent a coronavirus infection.

DESCRIPTION OF THE RELATED ART

[0005] Since 1979, thirty new human viral diseases have emerged and, notably, most have been transmitted from animals to humans. One of the latest examples is the recent outbreak of Severe Acute Respiratory Syndrome (SARS). SARS is an emergent disease that appeared suddenly in November 2002 in the Guangdong Province of the People's Republic of China. In a short amount of time, the disease spread to other Asian countries and then spread in rapid succession to North America and Europe (WHO. Severe Acute Respiratory Syndrome (SARS). Wkly. Epidemiol. Rec. 78: 81, 2003). Within nine months of the initial appearance of SARS, nearly 8,500 cases were reported, with a mortality rate of about 10%. Clinically, the disease is characterized by fever, dyspnoea, lymphopenia, and pulmonary lesions, indicating diffuse alveolar damage (Nicholls et al., Lancet 361: 1773, 2003). Several candidate agents were suggested as the causal agent of the disease, but the search narrowed down to a previously unknown coronavirus (a group 2 Coronavirus; SARS-CoV or SCV), which, alone or in combination with human metapneumovirus, is now accepted as the primary cause of SARS (Ksiazek et al., N. Engl. J. Med. 348: 1953, 2003; Drosten et al., N. Engl. J.

Med. 348: 1967, 2003; Kuiken et al., *Lancet* 362: 263, 2003; Fouchier et al., *Nature* 423: 240, 2003).

[0006] Coronaviruses are plus-strand RNA viruses that cause disease in animals and humans. A coronavirus infection can be systemic or localized. When localized, the coronavirus will infect only a few cell types, such as epithelial cells of the respiratory or enteric tract, and macrophages.

[0007] With such a new disease, many unresolved issues remain, even including the mode of transmission of the causal agent of SARS. Some clues can be gleaned from the 2003 epidemic: (a) nosocomial spread accounted for some 20-60% of the reported cases in various locations worldwide; (b) health care workers accounted for about 50% of cases in Toronto, Canada; and (c) spread was also common within households. The implication of this epidemiological data is profound-for example, if hospital closures were to be deemed necessary, most hospitals in the U.S. would face financial ruin (it has been estimated that a closure of just 2 weeks would leave most hospitals facing bankruptcy), while the high rates of infection within the health care worker population would stretch resources to the limit and would take a heavy toll on the workforce. During the 2003 epidemic entire workforces were sent home, and factories, companies, offices, and other businesses were temporarily closed. Furthermore, areas of perceived SARS hotspots were shunned, conferences were cancelled, and tourism industries suffered. Thus, a future epidemic could have far-reaching economic repercussions.

[0008] The major risk for transmission of the SARS virus is apparently by droplet exposure and close personal contact; therefore, strategies to reduce transmission of the SARS virus should parallel or mimic those used to limit other respiratory tract infections, i.e., reduce immediate contact and use barrier precautions against exposure to droplets. However, because the incubation period lasts from 2-10 days and non-specific initial symptoms are similar to those of other respiratory tract infections, such as influenza, the greatest risk for spread of SARS is undetected cases.

[0009] Thus, a need exists for alternative prophylactic strategies or therapies to treat or prevent coronavirus infections, such as those found in humans (e.g., infections resulting in SARS). For example, a need exists for identifying and developing vaccine compositions against coronavirus infections that can elicit a protective immune response. Furthermore, vaccine formulations are needed that can be delivered directly to or in close proximity to the site of infection to maximize therapeutic effectiveness. The present invention meets such needs and further provides other related advantages.

BRIEF SUMMARY OF THE INVENTION

[0010] Briefly, the present invention relates to compositions and methods useful for treating or preventing a coronavirus infection, such as a SARS coronavirus infection. The compositions comprise, for example, a coronavirus S protein immunogen described herein and an adjuvant such as a Proteosome or ProtollinTM, that are capable of eliciting a protective immune response in a subject or host. In one embodiment, the invention provides a method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising (a)

an adjuvant; (b) a pharmaceutically acceptable excipient; and (c) at least one coronavirus S protein immunogen comprising an amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18, wherein said at least one S protein immunogen is capable of eliciting a protective immune response against coronavirus. In certain embodiments, the at least one coronavirus S protein immunogen is at least 90% identical or at least 80% identical to an amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18. In a particular embodiment, the at least one coronavirus S protein immunogen further comprises a hydrophobic moiety, and in certain particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In another embodiment, the excipient is a liposome. In other particular embodiments, the adjuvant is alum, Freund's adjuvant, a Proteosome, or Protollin. In one embodiment, at least two S protein immunogens are administered. In another embodiment, the at least one coronavirus S protein immunogen is linked to a second amino acid sequence, and in certain embodiments the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein. In one embodiment, the second amino acid sequence is a tag or an enzyme. In a certain embodiment, the tag is a histidine tag. In certain embodiments, the coronavirus infection is caused by at least one or at least two coronaviruses selected from a group 1 coronavirus, a group 2 coronavirus, a group 3 coronavirus, and a SARS group coronavirus. In a particular embodiment, the coronavirus infection is caused by a human coronavirus, wherein the human coronavirus is SARS-CoV. In other embodiments, the composition is administered by a route selected from enteral, parenteral, transdermal, transmucosal, nasal, and inhalation, and in a particular embodiment, the composition is administered nasally. In one embodiment of the invention, the immune response elicited comprises at least one antibody that specifically binds to the at least one coronavirus S protein immunogen.

[0011] The invention also provides a composition comprising (a) at least one coronavirus S protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; and (b) a Proteosome or Protollin, wherein said S protein immunogen is capable of eliciting a protective immune response. In a certain embodiment, the at least one coronavirus S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO:4. In certain embodiments, the at least one coronavirus S protein immunogen is at least 90% identical or at least 80% identical to an amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18. In a particular embodiment, the at least one coronavirus S protein immunogen further comprises a hydrophobic moiety, and in certain particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In one embodiment, at least two S protein immunogens are administered. In another embodiment, the at least one coronavirus S protein immunogen is linked to a second amino acid sequence, and in certain embodiments the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein. In one embodiment, the second amino acid sequence is a tag or an enzyme. In a certain embodiment, the tag is a histidine tag. In one embodiment, the composition further comprises a pharmaceutically acceptable excipient. In another embodiment, the at least one S protein immunogen is fused in frame to at least one second S protein immunogen comprising an amino acid sequence selected from an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26 to form a fusion protein.

[0012] In another embodiment, a composition is provided that comprises (a) a Proteosome or Protollin; and (b) a multivalent fusion coronavirus immunogen polypeptide. In still another embodiment, a method is provided for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof the composition comprising a Proteosome or Protollin and a multivalent fusion coronavirus immunogen polypeptide.

[0013] Also provided herein are methods for treating or preventing a coronavirus infection that comprise a composition comprising (a) at least one coronavirus S protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; and (b) a Proteosome or Protollin, wherein said S protein immunogen is capable of eliciting a protective immune response. In a certain embodiment, the at least one coronavirus S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO:4. In certain embodiments, the at least one coronavirus S protein immunogen is at least 90% identical or at least 80% identical to an amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18. In a particular embodiment, the at least one coronavirus S protein immunogen further comprises a hydrophobic moiety, and in certain particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In one embodiment, at least two S protein immunogens are administered. In another embodiment, the at least one coronavirus S protein immunogen is linked to a second amino acid sequence, and in certain embodiments the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein. In one embodiment, the second amino acid sequence is a tag or an enzyme. In a certain embodiment, the tag is a histidine tag. In one embodiment, the composition further comprises a pharmaceutically acceptable excipient. In another embodiment, the at least one S protein immunogen is fused in frame to at least one second S protein immunogen comprising an amino acid sequence selected from an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26 to form a fusion protein. In a particular embodiment, a method is provided for treating or preventing a coronavirus infection wherein the composition comprises Protollin and at least one coronavirus S protein

immunogen, wherein the at least one coronavirus S protein immunogen comprises the amino acid sequence set forth in either SEQ ID NO:2 or SEQ ID NO:4.

[0014] In another embodiment, the invention provides a composition comprising (a) at least one coronavirus S protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; and (b) a Proteosome or Protollin, wherein the S protein immunogen is capable of eliciting a protective immune response. In a particular embodiment, the at least one coronavirus S protein immunogen comprises an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEO ID NO:10, SEO ID NO:12, SEO ID NO:14, SEO ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26, which S protein immunogen is capable of eliciting a protective immune response. In certain other embodiments, the at least one coronavirus S protein immunogen comprises an amino acid sequence at least 80% identical to the amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26, which S protein immunogen is capable of eliciting a protective immune response (that is, has at least one epitope that elicits or is capable of eliciting a protective immune response). In particular embodiments, the coronavirus S protein immunogen comprises an amino acid sequence that is identical to, that is 90% identical to, or that is 80% identical to the amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18, wherein the S protein immunogen is capable of eliciting a protective immune response. In other particular embodiments, the at least one coronavirus S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO:4, an amino acid sequence that is at least 90% identical to SEQ ID NO:2 or 4, or an amino acid sequence that is at least 80% identical to SEQ ID NO:2 or 4, wherein the S protein immunogen is capable of eliciting a protective immune response. In particular embodiments, the composition comprises (1) a Proteosome or Protollin and (2) at least one coronavirus S protein immunogen, wherein the S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO:4. In a particular embodiment, the S protein immunogen further comprises a hydrophobic moiety, and in other particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In other embodiments, the at least one S protein immunogen is linked to a second amino acid sequence, and in a particular embodiment, the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein. In certain embodiments, the second amino acid sequence is a tag or an enzyme, and in a specific embodiment, the second amino acid sequence is a histidine tag. The present invention also provides the aforementioned compositions that further comprise at least one coronavirus N protein immunogen, wherein the N protein immunogen comprises an amino acid sequence selected from SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34,

SEQ ID NO:36, and SEQ ID NO:38. In another embodiment, the aforementioned compositions further comprise at least one M protein immunogen, wherein the at least one M protein immunogen is capable of eliciting an immune response. In a specific embodiment, the M protein immunogen comprises the sequence set forth in GenBank Accession No. AAU07933 (SEQ ID NO:39).

[0015] In other embodiments, a composition comprising a Proteosome or Protollin and at least one S protein immunogen (as described herein) is provided wherein the at least one S protein immunogen is fused in frame to at least one second S protein immunogen comprising an amino acid sequence selected from the amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26 to form a fusion protein. In still another embodiment, the at least one S protein immunogen is fused in frame to a coronavirus N protein immunogen comprising an amino acid sequence selected from the amino acid sequence set forth in SEQ ID NO:28; SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, and SEQ ID NO:38.

[0016] The invention also provides a composition comprising (a) at least one N protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38; and (b) a Proteosome or Protollin, wherein the N protein immunogen is capable of eliciting a protective immune response. In certain embodiments, the N protein immunogen comprises an amino acid sequence that is at least 90% identical to an amino acid sequence selected from the amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, and SEQ ID NO:38, and in certain other embodiments, the N protein immunogen comprises an amino acid sequence that is at least 80% identical to an amino acid sequence selected from the amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, and SEQ ID NO:38. In certain embodiments, the N protein immunogen further comprises a hydrophobic moiety, and in other certain embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid.

[0017] In another embodiment, the invention provides a composition comprising (a) a Proteosome or Protollin; and (b) a multivalent fusion coronavirus immunogen polypeptide. In certain embodiments, the multivalent fusion coronavirus immunogen comprises at least two S protein immunogens or fragments thereof. In certain embodiments, the multivalent fusion coronavirus immunogen comprises at least two S protein immunogens that are selected from an S protein immunogen comprising an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26. In certain other embodiments, the multivalent fusion coronavirus immunogen comprises at least one S protein immunogen comprising an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:26 and at least one coronavirus N protein immunogen comprising an amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38.

[0018] In specific embodiments, any one of the compositions described herein (including those described above) further comprises a pharmaceutically acceptable excipient. In other specific embodiments, the invention provides any one of the compositions described herein (including those described above) for use in treating or preventing a coronavirus infection. Also provided herein, is the use of any one of the compositions described herein (including those described above) for the manufacture of a medicament for treating or preventing a coronavirus infection. In particular embodiments, the coronavirus infection is caused by at least one of a group 1 coronavirus, group 2 coronavirus, a group 3 coronavirus, and a SARS group coronavirus, and in other embodiments, the coronavirus infection is caused by at least two of a group 1, group 2, group 3, and SARS group coronavirus. In a particular embodiment, the coronavirus infection is caused by a human coronavirus, and in another particular embodiment the human coronavirus is SARS-CoV.

[0019] In one embodiment, the present invention provides a method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof any one of the compositions described herein. In a particular embodiment, a method for treating or preventing a coronavirus infection, comprises administering to a subject in need thereof a composition comprising (a) a Proteosome or Protollin; (b) at least one coronavirus S protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; and (c) at least one N protein immunogen that comprises an amino acid sequence that is selected from the amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, and SEQ ID NO:38. In a particular embodiment, the at least one coronavirus N protein immunogen is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, and in another particular embodiment, the at least one coronavirus N protein immunogen is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38. In another embodiment, the invention provides a method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising: (a) a Proteosome or Protollin; (b) at least one coronavirus S protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26. In a particular embodiment, the S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18. In certain embodiments, the methods comprise at least one coronavirus S protein immunogen wherein the S protein immunogen is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26. In another certain embodiment, the at least one coronavirus S protein immunogen is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEO ID NO:18, SEO ID NO:20, SEO ID NO:22, SEO ID NO:24, or SEQ ID NO:26. In another particular embodiment, the S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO:4, or comprises an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:4, or comprises an amino acid sequence at least 80% identical to the amino acid sequence set forth in SEQ ID NO:2 or SEO ID NO:4, wherein the S protein immunogen is capable of elicting a protective immune response. In certain embodiments, the at least one coronavirus S protein immunogen further comprises a hydrophobic moiety, wherein the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In other embodiments, wherein the method comprises administering at least one S protein immunogen and at least one N protein immunogen, the at least one coronavirus N protein immunogen further comprises a hydrophobic moiety, or the at least one coronavirus S protein immunogen further comprises a hydrophobic moiety, or the at least one N protein immunogen and the at least one S protein immunogen comprises a hydrophobic moiety, wherein the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In other embodiments of these methods, the composition further comprises at least one M protein immunogen, wherein the M protein immunogen is capable of eliciting an immune response. In a specific embodiment, the M protein immunogen comprises the sequence set forth in GenBank Accession No. AAU07933 (SEQ ID NO:39). In certain other embodiments, the at least one coronavirus S protein immunogen is linked to a second amino acid sequence, and in specific embodiments, the S protein immunogen is fused to the second amino acid sequence to form a fusion protein. In a specific embodiment, the second amino acid sequence is a tag or an enzyme, and in other specific embodiments, the tag is a histidine tag. In other particular embodiments, wherein the method comprises the at least one N protein immunogen, the at least one coronavirus N protein immunogen is linked to a second amino acid sequence, and in specific embodiments, the N protein immunogen is fused to the second amino acid sequence to form a fusion protein. In a specific embodiment, the second amino acid sequence is a tag or an enzyme, and in other specific embodiments, the tag is a histidine tag. In another embodiment, the coronavirus infection is caused by at least one of a group 1 coronavirus, group 2 coronavirus, a group 3 coronavirus, and a SARS group coronavirus, and in other embodiments, the coronavirus infection is caused by at least two of a group 1, group 2, group 3, and SARS group coronavirus. In a particular embodiment, the coronavirus infection is caused by a human coronavirus, and in another particular embodiment the human coronavirus is SARS-CoV. In certain embodiments of the methods, the composition is administered by a route selected from enteral, parenteral, transdermal, transmucosal, nasal, and inhalation. In a particular embodiment, the composition is administered nasally. In particular embodiments, the at least one coronavirus S

protein immunogen comprises the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:4. In another particular embodiment, the invention provides a method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition that comprises Protollin and at least one coronavirus S protein immunogen, wherein the at least one coronavirus S protein immunogen comprises the amino acid sequence set forth in either SEQ ID NO:2 or SEQ ID NO:4.

[0020] Also provided by the present invention is a method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising a pharmaceutically acceptable excipient and at least one coronavirus S protein immunogen comprising an amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18, wherein said at least one S protein immunogen is capable of eliciting a protective immune response against coronavirus. In certain embodiments, the at least one coronavirus S protein immunogen is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18, and in other certain embodiments, the at least one coronavirus S protein immunogen is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18. In a particular embodiment, the coronavirus S protein immunogen further comprises a hydrophobic moiety, and in other particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In another embodiment, the composition further comprises an adjuvant, and in a particular embodiment, the adjuvant is alum, Freund's adjuvant, a Proteosome, or Protollin. In another embodiment, the composition further comprises at least one M protein immunogen, wherein the M protein immunogen is capable of eliciting an immune response, and in a particular embodiment, the M protein immunogen comprises the amino acid sequence set forth in GenBank Accession No. AAU07933. In certain embodiments, the method comprises administering at least two S protein immunogens. In another embodiment, the at least one coronavirus S protein immunogen is linked to a second amino acid sequence, and in another particular embodiment, the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein. In a certain embodiment, the second amino acid sequence is a tag or an enzyme, and in a certain particular embodiment, the tag is a histidine tag. In particular embodiments, the coronavirus infection is caused by a group 1 coronavirus, a group 2 coronavirus, a group 3 coronavirus, or a a SARS group coronavirus. In other embodiments, the coronavirus infection is caused by at least two of a group 1, group 2, group 3, and SARS group coronavirus. In a specific embodiment, the coronavirus infection is caused by a human coronavirus, and in another specific embodiment, the human coronavirus is SARS-CoV. In still another embodiment, the composition is administered by a route selected from enteral, parenteral, transdermal, transmucosal, nasal, and inhalation. In a particular embodiment, the composition is administered nasally. In particular embodiments, the immune response comprises eliciting at least one antibody that specifically binds to the at least one coronavirus S protein immunogen.

[0021] In still another embodiment, the invention provides a method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising (a) a pharmaceutically acceptable excipient; (b) at least one coronavirus S protein immunogen; and (c) at least one coronavirus N protein immunogen, wherein the at least one S protein immunogen is selected from an amino acid sequence set forth in SEO ID NO:4 SEO ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, and SEQ ID NO:18, and wherein the at least one N protein immunogen is selected from an amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, wherein said at least one coronavirus S protein immunogen and at least one coronavirus N immunogen are capable of eliciting a protective immune response against coronavirus. In certain embodiments, the at least one coronavirus S protein immunogen is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18, and in other certain embodiments, the at least one coronavirus S protein immunogen is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18. In certain embodiments, the at least one coronavirus N protein immunogen is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, and in certain other embodiments, the at least one coronavirus N protein immunogen is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38. In a particular embodiment, the coronavirus S protein immunogen further comprises a hydrophobic moiety, and in other particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In a particular embodiment, the coronavirus N protein immunogen further comprises a hydrophobic moiety, and in other particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In another embodiment, the composition further comprises an adjuvant, and in a particular embodiment, the adjuvant is alum, Freund's adjuvant, a Proteosome, or Protollin. In another embodiment, the composition further comprises at least one M protein immunogen, wherein the M protein immunogen is capable of eliciting an immune response, and in a particular embodiment, the M protein immunogen comprises the amino acid sequence set forth in GenBank Accession No. AAU07933. In certain embodiments, the method comprises administering at least two S protein immunogens. In another embodiment, the at least one coronavirus S protein immunogen is linked to a second amino acid sequence, and in another particular embodiment, the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein. In a certain embodiment, the second amino acid sequence is a tag or an enzyme, and in a certain particular embodiment, the tag is a histidine tag. In certain embodiments, the method comprises administering at least two N protein immunogens. In another embodiment, the at least one coronavirus N protein immunogen is linked to a second amino acid sequence, and in another particular embodiment, the at least one coronavirus N protein immunogen is fused to the second amino acid sequence to form a fusion protein. In a certain embodiment, the second amino acid sequence is a tag or an enzyme, and in a certain particular embodiment, the tag is a histidine tag. In particular embodiments, the coronavirus infection is caused by a group 1 coronavirus, a group 2 coronavirus, a group 3 coronavirus, or a SARS group coronavirus. In other embodiments, the coronavirus infection is caused by at least two of a group 1, group 2, group 3, and SARS group coronavirus. In a specific embodiment, the coronavirus infection is caused by a human coronavirus, and in another specific embodiment, the human coronavirus is SARS-CoV. In still another embodiment, the composition is administered by a route selected from enteral, parenteral, transdermal, transmucosal, nasal, and inhalation. In a particular embodiment, the composition is administered nasally. In particular embodiments, the immune response comprises eliciting at least one antibody that specifically binds to the at least one coronavirus S protein immunogen, and in other particular embodiments, the immune response comprises eliciting at least one antibody that specifically binds to the at least one coronavirus N protein immunogen

[0022] In another embodiment, a method is provided for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising a pharmaceutically acceptable excipient and at least one coronavirus N protein immunogen comprising an amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, wherein said at least one coronavirus N protein immunogen is capable of eliciting a protective immune response against coronavirus. In certain embodiments, the at least one coronavirus N protein immunogen is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, and in certain other embodiments, the at least one coronavirus N protein immunogen is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38. In a particular embodiment, the coronavirus N protein immunogen further comprises a hydrophobic moiety, and in other particular embodiments, the hydrophobic moiety is a hydrophobic polypeptide or a lipid. In a particular embodiment, the excipient is a liposome. In another embodiment, the composition further comprises an adjuvant, and in a particular embodiment, the adjuvant is alum, Freund's adjuvant, a Proteosome, or Protollin. In another embodiment, the composition further comprises at least one M protein immunogen, wherein the M protein immunogen is capable of eliciting an immune response, and in a particular embodiment, the M protein immunogen comprises the amino acid sequence set forth in GenBank Accession No. AAU07933. In certain embodiments, the method comprises administering at least two N protein immunogens. In another embodiment, the at least one coronavirus N protein immunogen is linked to a second amino acid sequence, and in another particular embodiment, the at least one coronavirus N protein immunogen is fused to the second amino acid sequence to form a fusion protein. In a certain embodiment, the second amino acid sequence is a tag or an enzyme, and in a certain particular embodiment, the tag is a histidine tag. In particular embodiments, the coronavirus infection is caused by a group 1 coronavirus, a group 2 coronavirus, a group 3 coronavirus, or a a SARS group coronavirus. In other embodiments, the coronavirus infection is caused by at least two of a group 1, group 2, group 3, and SARS group coronavirus. In a specific embodiment, the coronavirus infection is caused by a human coronavirus, and in another specific embodiment, the human coronavirus is SARS-CoV. In still another embodiment, the composition is administered by a route selected from enteral, parenteral, transdermal, transmucosal, nasal, and inhalation. In a particular embodiment, the composition is administered nasally. In particular embodiments, the immune response comprises eliciting at least one antibody that specifically binds to the at least one coronavirus N protein immunogen.

[0023] The invention also provides a plurality of isolated antibodies produced by a method comprising administering to a subject a composition comprising a pharmaceutically acceptable excipient and at least one coronavirus S protein immunogen comprising an amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18, wherein said at least one S protein immunogen is capable of eliciting a protective immune response against coronavirus. In another embodiment, the invention provides a plurality of isolated antibodies produced by a method comprising administering to a subject a composition comprising (a) a pharmaceutically acceptable excipient; (b) at least one coronavirus S protein immunogen; and (c) at least one coronavirus N protein immunogen, wherein the at least one S protein immunogen is selected from an amino acid sequence set forth in SEQ ID NO:4 SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, and SEQ ID NO:18, and wherein the at least one N protein immunogen is selected from an amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, wherein said at least one coronavirus S protein immunogen and at least one coronavirus N immunogen are capable of eliciting a protective immune response against coronavirus. In still another embodiment, the invention provides a plurality of isolated antibodies produced by a method comprising administering to a subject a composition comprising a pharmaceutically acceptable excipient and at least one coronavirus N protein immunogen comprising an amino acid sequence set forth in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, wherein said at least one coronavirus N protein immunogen is capable of eliciting a protective immune response against coronavirus.

[0024] In another embodiment, is provided a composition comprising (a) at least one isolated antibody or antigenbinding fragment thereof that specifically-binds to at least one coronavirus S polypeptide comprising an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; and (b) at least one isolated antibody or antigen-binding fragment thereof that specifically binds to at least one coronavirus N polypeptide that comprises an amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, wherein the composition inhibits infection by a coronavirus. In particular embodiments, the composition further comprises a pharmaceutically acceptable excipient. In another embodiment, a method is provided for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising (a) at least one isolated antibody or antigen-binding fragment thereof that specifically binds to at least one coronavirus S polypeptide comprising an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; and (b) at least one isolated antibody or antigen-binding fragment thereof that specifically binds to at least one coronavirus N polypeptide that comprises an amino acid sequence set forth in SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38

[0025] These and other embodiments of the present invention will become evident upon reference to the following detailed description and attached drawings. In addition, all U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, and nonpatent publications referred to in this application and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] FIG. 1 shows a schematic of full-length S protein (S_{TM}) and an S protein variant (S_{TM-del}) . The top of the schematic shows the nucleotide sequences that correspond to the front, middle, and back portions of the S protein. The hatched box represents the transmembrane (TM) domain.

[0027] FIG. 2 shows the serum (IgG) dose response in mice that were administered various amounts of S_{TM-del} protein alone (S_{TM-del} protein i.n.) or adjuvanted with ProtollinTM (S_{TM-del} protein+ProtollinTM i.n.).

[0028] FIG. 3A illustrates the titer of serum IgG in mice that were immunized intranasally (i.n.) with S_{TM-del} protein adjuvanted with ProtollinTM or S_{TM-del} protein alone, and in mice that were immunized intramuscularly with S_{TM-del} protein adjuvanted with alum and in mice that received only PBS. **FIG. 3B** shows the titer of lung IgA from mice immunized intranasally (i.n.) with S_{TM-del} protein adjuvanted with Protollin or S_{TM-del} protein alone, and in mice that were immunized intranasally (i.n.) with S_{TM-del} protein adjuvanted with Protollin or S_{TM-del} protein alone, and in mice that were immunized intramuscularly with S_{TM-del} protein adjuvanted with alum and in mice that received only PBS.

[0029] FIGS. 4A-4F presents the nucleotide sequence (SEQ ID NO:1) and amino acid sequence (SEQ ID NO:2) of S protein from SARS coronavirus strain Tor2.

[0030] FIGS. 5A-5B presents the nucleotide sequence (SEQ ID NO:27) and amino acid sequence (SEQ ID NO:28) of N protein from SARS coronavirus strain Urbani.

[0031] FIG. 6 illustrates serum IgG titers of mice (either anesthetized (with) or non-anesthetized (without)) that received intranasally 10 μ g SARS S-protein (full-length) or S_{TM-del} protein (transmembrane deleted (Δ TM Deleted))) combined with various concentrations of ProtollinTM. Additional groups of mice received intramuscular injections of 10 μ g SARS S-protein adsorbed to Alhydrogel® (F.L. i.m.) or 10 μ g S_{TM-del} protein (Del i.m.).

[0032] FIG. 7 presents IgA titers in lung lavage and nasal washes from the mice immunized as described in the Brief Description of **FIG. 6**.

[0033] FIG. 8 illustrates release of cytokines from in vitro re-stimulated splenocytes from mice immunized with full-length S-protein and Protollin (S(FL)+ProtollinTM); full-length S-protein and Alhydrogel (S(FL)+Alum); and PBS alone.

DETAILED DESCRIPTION OF THE INVENTION

[0034] As set forth above, described herein are compositions comprising at least one coronavirus S protein immunogen, at least one N protein immunogen, or at least one S protein immunogen and at least one N protein immunogen, fragments or variants thereof, which are capable of eliciting an immune response that is protective against an infection caused by a coronavirus. Also described herein are methods for making and using these S and N protein immunogens to treat or prevent coronavirus infections. Coronavirus immunogens (antigens) of the invention comprise at least one coronavirus virus-encoded polypeptide, such as a coronavirus virus S protein immunogen or N protein immunogen, or variants and fragments thereof, capable of eliciting an immune response, which includes a neutralizing antibody response and/or cell-mediated immunity. Coronavirus antigens (immunogens) may comprise one or more recombinantly or synthetically produced coronavirus polypeptides or may comprise one or more coronavirus polypeptides isolated from coronavirus viral particles or from coronavirus-infected host cells. Discussed in more detail below are coronavirus S and N protein immunogens, fragments, derivatives, and variants thereof, as well as representative compositions and therapeutic uses.

[0035] In certain embodiments, adjuvanted coronavirus virus S or N protein immunogens, fragments, derivatives, or variants thereof are provided. For example, the coronavirus virus S or N protein immunogens may be combined or admixed with Proteosomes or ProtollinTM. Proteosome (also referred to as Projuvant) combinations or mixtures are comprised of outer membrane proteins obtained from Gramnegative bacteria. Alternatively, Proteosomes can be combined with endogenous or exogenous liposaccharides (i.e., OMP:LPS, also referred to as Protollin). Therefore, these immunogenic compositions (vaccine compositions or formulations) are advantageous over other more typical adjuvanted vaccines in that proteosome technology-based adjuvants are capable of aiding in eliciting an innate immune response, an enhanced serological and mucosal response, and a specific immune response when "loaded" with one or more immunogens (or antigens) of interest (such as coronavirus virus S or N protein immunogens, and fragments, derivatives, or variants thereof, or other immunogens).

[0036] "Proteosome or Projuvant," as used herein, refers to preparations of outer membrane proteins (OMPs, also known as porins) from Gram-negative bacteria, such as *Neisseria* species (see, e.g., Lowell et al., *J. Exp. Med.* 167:658, 1988; Lowell et al., *Science* 240:800, 1988; Lynch et al., *Biophys. J.* 45:104, 1984; Lowell, in "New Generation Vaccines" 2nd ed., Marcel Dekker, Inc., New York, Basil, Hong Kong, page 193, 1997; U.S. Pat. No. 5,726,292; U.S. Pat. No. 4,707,543), which are useful as a carrier or an adjuvant for immunogens, such as bacterial or viral antigens. Proteosomes are hydrophobic and safe for human use, and comparable in size to certain viruses. Proteosomes have the capability to auto-assemble into vesicle or vesicle-like OMP clusters of about 20 nm to about 800 nm, and to noncovalently incorporate, coordinate, associate (e.g., electrostatically or hydrophobically), or otherwise cooperate with protein antigens (Ags), particularly antigens that have a hydrophobic moiety. Any preparation method that results in the outer membrane protein component in vesicular or vesicle-like form, including multi-molecular membranous structures or molten globular-like OMP compositions of one or more OMPs, is included within the definition of Proteosome. Proteosomes may be prepared, for example, as described in the art (see, e.g., U.S. Pat. No. 5,726,292 or U.S. Pat. No. 5,985,284). Proteosomes prepared according to procedures set forth herein may also contain an endogenous lipopolysaccharide or lipooligosaccharide (LPS or LOS, respectively) originating from the bacteria used to produce the OMP porins (e.g., Neisseria species), which generally will be less than 2% of the total OMP preparation.

[0037] "Liposaccharide", as used herein, refers to native (isolated or prepared synthetically with a native structure) or modified lipopolysaccharide or lipooligosaccharide (collectively, also referred to as "LPS") derived from Gramnegative bacteria, such as Shigella flexneri or Plesiomonas shigelloides, or other Gram-negative bacteria (including Alcaligenes, Bacteroides, Bordetella, Borrellia, Brucella, Campylobacter, Chlamydia, Citrobacter, Edwardsiella, Ehrlicha, Enterobacter, Escherichia, Francisella, Fusobacterium, Gardnerella, Hemophilus, Helicobacter, Klebsiella, Legionella, Leptospira (including Leptospira interrogans), Moraxella, Morganella, Neiserria, Pasteurella, Proteus, Providencia, other Plesiomonas, Porphyromonas (including Porphyromonas gingivalis), Prevotella, Pseudomonas, Rickettsia, Salmonella, Serratia, other Shigella, Spirllum, Veillonella, Vibrio, or Yersinia species). The liposaccharide may be in a detoxified form (i.e., having the Lipid A core removed) or may be in a form that has not been detoxified. For example, an LPS that contains multiple lipid A species such as P. gingivalis LPS may be used in the compositions described herein (see, e.g., Darveau et al., Infect. Immun. 72:5041-51 (2004)). In the instant disclosure, liposaccharide need not be, and preferably is not, detoxified. The liposaccharide may be prepared, for example, as described in U.S. Patent Application Publication No. 2003/0044425.

[0038] "Proteosome: LPS or Protollin or IVX or IVX-908" as used herein refers to preparations of projuvant admixed as described herein (e.g., by the exogenous addition) with at least one kind of liposaccharide to provide an OMP-LPS composition (which can function as an immunostimulatory composition). Thus, the OMP-LPS adjuvant can be comprised of two of the basic components of Protollin, which include (1) an outer membrane protein preparation of Proteosomes (i.e., Projuvant) prepared from Gram-negative bacteria, such as Neisseria meningitidis, and (2) a preparation of one or more liposaccharides. A liposaccharide may be endogenous (i.e., naturally contained in the OMP Proteosome preparation), may be admixed or combined with an OMP preparation from an exogenously prepared liposaccharide (i.e., prepared from a different culture or microorganism than the OMP preparation), or may be a combination thereof. Such exogenously added LPS may be from the same Gram-negative bacterium from which the OMP preparation was made or from a different Gram-negative bacterium. Protollin should also be understood to optionally include lipids, glycolipids, glycoproteins, small molecules, or the like, and combinations thereof. The Protollin may be prepared, for example, as described in U.S. Patent Application Publication No. 2003/0044425.

[0039] Projuvant is generally used in conjunction with antigens (naturally-occurring or modified) that possess a naturally occurring, modified, or supplementary hydrophobic moiety (also referred to as a "foot" or "anchor"). Protollin (containing exogenously added LPS) can be used with an antigen that does not contain a hydrophobic foot domain and that can be largely hydrophilic in nature. Protollin can be admixed or combined with an antigen containing a hydrophobic foot, an antigen lacking a hydrophobic foot, or with a combination of antigens having and not having a hydrophobic portion or foot.

[0040] An immunogenic composition as used herein refers to any one or more compounds or agents or immunogens capable of priming, potentiating, activating, eliciting, stimulating, augmenting, boosting, amplifying, or enhancing an adaptive (specific) immune response, which may be cellular (T cell) or humoral (B cell), or a combination thereof. Preferably, the adaptive immune response is protective, which may include neutralization of a virus (decreasing or eliminating virus infectivity). A representative example of an immunogen is a microbial antigen (such as one or more coronavirus antigens).

[0041] In the present description, any concentration range, percentage range, ratio range, or integer range is understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer, etc.), unless otherwise indicated. As used herein, "about" or "comprising essentially of" means±15%. As used herein, the use of an indefinite article, such as "a" or "an," should be understood to refer to the singular and the plural of a noun or noun phrase (i.e., meaning "one or more" or "at least one" of the enumerated elements or components). The use of the alternative (e.g., "or") should be understood to mean either one, both or any combination thereof of the alternatives. In addition, it should be understood that the individual compounds, or groups of compounds, derived from the various combinations of the sequences, structures, and substituents described herein, are disclosed by the present application to the same extent as if each compound or group of compounds was set forth individually. Thus, selection of particular sequences, structures, or substituents is within the scope of the present invention.

Coronavirus Immunogens

[0042] Compositions as described herein useful for treating and/or preventing a coronavirus infection comprises immunogenic coronavirus polypeptides, such as S protein, fragments, and variants thereof, and also includes a fusion of a coronavirus immunogen to other peptides or polypeptides (e.g., a hydrophobic amino acid sequence or a histidine tag or a non-S protein coronavirus polypeptide or fragment thereof) or other modifications (e.g. glycosylation). In certain embodiments, the immunogenic S polypeptides may comprise any portion of an S protein that has an epitope capable of eliciting a protective immune response (e.g., eliciting production of a neutralizing antibody and/or stimulating a cell-mediated immune response) against a coronavirus infection. Immunogenic polypeptides as described herein may be arranged, combined, or fused in a linear form, and each immunogen may or may not be reiterated, wherein

the reiteration may occur once or multiple times, and may be located at the N-terminus, C-terminus, or internal to a linear sequence of immunogenic S or other coronavirus polypeptide immunogens. In addition, a plurality of different coronavirus immunogenic polypeptides (e.g., other S proteins, N proteins, M proteins, or other coronavirus polypeptides, and variants or fragments thereof) can be selected and mixed or combined into a cocktail composition to provide a multivalent vaccine for use in eliciting a protective immune response without a harmful or otherwise unwanted associated immune responses or side effects. Also provided herein are methods for producing synthetic or recombinant multivalent coronavirus polypeptide immunogeris, including fusion proteins. For example, host cells containing an S protein immunogen-encoding nucleic acid expression construct may be cultured to produce the recombinant S protein immunogen, or variants thereof (e.g., deletion mutants or S polypeptide fragments lacking a C-terminal transmembrane domain). Also contemplated are methods for treating or preventing coronavirus infections or eliciting an immune response using an S protein immunogen or variant thereof, or a combination of polypeptides (including fusion proteins).

[0043] By way of background and not wishing to be bound by theory, coronavirus has a positive-sense, non-segmented, single-stranded RNA genome, which encodes at least 18 viral proteins (such as non-structural proteins (NSP) 1-13, structural proteins E, M, N, S), and an RNA-dependent RNA polymerase). Coronavirus has three major surface glycoproteins (designated S, E, and M), and some coronaviruses have another surface glycoprotein referred to as hemagglutinin esterase (HE), which is not found in the SARS virus. In addition, the N (nucleocapsid) protein is a basic phosphoprotein, which is generally associated with the genome and has been reported to be antigenic (Holmes and Lai, Fields Virology, Chapter 34, 1996). The S (spike) protein, a major antigen of coronavirus, has two domains: S1, which is believed to be involved in receptor binding and S2, believed to mediate membrane fusion between the virus and target cell (Holmes and Lai, 1996, supra).

[0044] The S (spike) protein may form non-covalently linked homotrimers (oligomers), which may mediate receptor binding and virus infectivity. Homotrimers of S proteins are likely necessary for presenting the correct native conformation of receptor binding domains and for eliciting a neutralizing antibody response. In addition, intracellular processing of S protein is associated with significant posttranslation oligosaccharide modification. The posttranslation oligosaccharide modification (glycosylation) expected by N-glycan motif analysis indicates that the S protein has as many as 23 sites for such modification. In addition, C-terminal cysteine residues may also participate in protein folding and preserving the native (functional) S protein conformation. The S protein of some coronaviruses (e.g., some strains of group II and III viruses) can be proteolytically processed near the center of the S protein by a trypsin-like protease in the Golgi apparatus or by extracellularly localized enzymes into to a linked polypeptide, containing an N-terminal S1 and a C-terminal S2 polypeptide. Some members of the type II group of coronaviruses and group I viruses may not be so processed. Until the characterization of the SARS-associated viral agent as a coronavirus, the coronaviruses were divided into three groups on the basis of serological and genetic properties, which groups were referred to as Group 1, Group 2, and Group 3, which are also referred to in the art and herein as Group I, Group II, and Group III (see, e.g., Holmes et al., *Fields Virology*, supra; Stadler et al., *Nat. Rev. Microbiol.* 209-18 (2003); Holmes, *J. Clin. Invest.* 111:1605-609 (2003)). Presently, the coronaviruses are subdivided into Group 1, Group 2, Group 3, and SARS-CoV (SARS-associated coronavirus) (see, e.g., Stadler et al., supra; Holmes, *J. Clin. Invest.*, supra).

[0045] An exemplary SARS-CoV S protein has 1,255 amino acids (see, e.g., SEQ ID NO:2 and FIG. 4), with a 12 amino acid signal sequence, the S1 domain between amino acids 12-672 (see, e.g., SEQ ID NO:20), and the S2 domain between amino acids 673-1192 (see, e.g., SEQ ID NO:22). In certain embodiments, coronavirus S or N polypeptides and variants thereof that have one or more epitopes (i.e., are immunogens) and that are capable of eliciting a neutralizing (e.g., IgA or IgG antibody) or cell-mediated immune response, are included in compositions for use in treating or preventing coronavirus infections. Also described herein is the identification of S protein immunogens (containing one or more immunogenic epitopes) that are not glycosylated and that are capable of eliciting a neutralizing immune response. In one embodiment, the S protein immunogen is a portion or fragment of the full-length S protein. For example, a portion of the S protein immunogen that includes amino acids at positions 417-560 of SEQ ID NO:2 does not contain an N-glycan substitution site and is a hydrophilic region. This region also corresponds to the region of the S1 domain that is believed to be involved with cell receptor binding. Accordingly, a fragment comprising amino acids at positions 417-560 of SEQ ID NO:2, or a portion thereof (e.g., SEQ ID NO:12 and SEQ ID NO:14), may be immunogenic and an immune response specific for one or more epitopes within this sequence may prevent entry of the coronavirus into a target cell. In addition, identification of such immunogenic fragments of the S protein that do not contain glycosylation sites provides the advantage that the fragments may be made and produced in cells, such as bacteria, that are not capable of glycosylating a protein in the same manner as a mammalian cell. It is also important to note that vaccinia virus expressed S-protein from feline infectious peritonitis virus (FIPV) has been implicated in antibody-induced enhancement (ADE) of the virus infection (Vennema et al., Adv. Exp. Med. Biol. 276:217 (1990); Klepfer et al., Adv. Exp. Med. Biol. 380:235 (1995)). Therefore, in view of this description in the art, the capability of an S protein immunogen to elicit an immune response in a host as described herein, and thus provide advantages as a vaccine, may not be expected.

[0046] As described herein, an S protein immunogen includes a fragment of S protein or a S protein variant (which may be a variant of a full-length S protein or S fragment as described herein) that retains or that has at least one epitope contained within the full-length S protein or wildtype S protein, respectively, that elicits a protective immune response against coronavirus, preferably against SARS coronavirus. An S protein fragment or an S protein variant has at least one biological activity or function of a full-length or wildtype (natural) S protein (such as receptor binding or cell fusion activity), or has multiple S protein-specific biological activities or functions. For example, an S protein variant may contain an epitope that induces an immune response (for example, induces production of an

antibody that specifically binds to a wildtype or full-length S polypeptide) or may have S protein receptor binding activity. In one embodiment, an S-protein fragment is a truncated S-protein that comprises an amino acid set forth at positions 1-1200 of SEQ ID NO:2 (SEQ ID NO:4). The portion of the S-protein that is deleted is the transmembrane region; the remaining fragment is also referred to herein as S_{TM-del} or ΔTM S-protein. In certain other embodiments, exemplary S protein fragments include an amino acid sequence set forth at positions 12-254 of SEQ ID NO:2 (SEQ ID NO:6); or at positions 255-834 of SEQ ID NO:2 (SEQ ID NO:8); or at positions 835-1255 of SEQ ID NO:2 (SEQ ID NO:10); or at positions 12-672 of SEQ ID NO:2 (SEQ ID NO:20; S1 domain); or at positions 673-1195 of SEQ ID NO:2 (SEQ ID NO:22; S2 domain). In certain other embodiments, an S polypeptide fragment includes an amino acid sequence set forth at positions 300-550 of SEQ ID NO:2 (SEQ ID NO:12); or at positions set forth at positions 380-580 of SEQ ID NO:2 (SEQ ID NO:14); or at positions 380-480 of SEQ ID NO:2 (SEQ ID NO:16); or at positions 481-580 of SEQ ID NO:2 (SEQ ID NO:18); or at positions 673-960 of SEQ ID NO:2 (SEQ ID NO:24); or at positions 961-1200 of SEQ ID NO:2 (SEQ ID NO:26). S protein immunogenic fragments also include smaller portions or fragments of the aforementioned amino acid fragments of an S protein. An S protein fragment that comprises an epitope that stimulates, induces, or elicits an immune response may comprise a sequence of consecutive amino acids ranging from any number of amino acids between 8 amino acids and 150 amino acids (e.g., 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 50, etc. amino acids) of any one of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26.

[0047] In related embodiments, a coronavirus S polypeptide variant has at least 50% to 100% amino acid identity (that is, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity) to the amino acid sequence of the full length S protein as set forth in SEQ ID NO:2 (which is from SARS-CoV Tor2 strain; SEQ ID NO:1 is the nucleic acid sequence that encodes the amino acid sequence of SEQ ID NO:2), or 50% to 100% amino acid identity (that is, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity) to an S protein fragment as set forth in any one of SEQ ID NOS:4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26. Such S polypeptide variants and fragments retain at least one S protein-specific biological activity or function, such as (1) the capability to elicit a protective immune response (that is, the S polypeptide variant contains an epitope that induces or elicits a protective immune response), for example, a neutralizing response and/or a cell-mediated immune response against coronavirus, such as SARS-CoV; (2) the capability to mediate viral infection via receptor binding; and (3) the capability to mediate membrane fusion between a virion and the host

[0048] Additional examples of full-length SARS coronavirus S (spike) polypeptide sequences are provided herein and available in the art. For example, a full-length S protein of the SARS coronavirus Frankfurt 1 strain is provided in SEQ ID NO:45, which is encoded by the polynucleotide sequence set forth in SEQ ID NO:44. A full-length S protein of the SARS coronavirus TW5 strain is provided in SEQ ID NO:47, which is encoded by the polynucleotide sequence set forth in SEQ ID NO:46. A full-length S protein of the SARS coronavirus GD03T0013 strain is provided in SEQ ID NO:49, which is encoded by the polynucleotide sequence set forth in SEQ ID NO:48. A full-length S protein of the SARS coronavirus BJ01 strain is provided in SEQ ID NO:51, which is encoded by the polynucleotide sequence set forth in SEQ ID NO:50. In certain embodiments, fragments (such as truncated S protein that has a deletion of the transmembrane domain) and variants of any one of these full-length S polypeptides may be used as immunogens for eliciting a protective immune response against a coronavirus, particularly a SARS coronavirus.

[0049] In other embodiments, a fragment of N protein, or a variant of a fragment or a variant of the full-length N protein, includes an immunogen that retains or has at least one N protein related biological activity or function, such as (1) the capability to induce an immune response (that is, the N polypeptide variant contains an epitope that induces or elicits an immune response), which may be, for example, a humoral response (i.e., eliciting production of an antibody that specifically binds to a wildtype or full-length N polypeptide) and/or a cell-mediated immune response against coronavirus, such as SARS-CoV; (2) the capability to bind to a nucleic acid, such as RNA; and (3) the capability to promote pathogenesis of the coronavirus (see, e.g., Chen et al. Clin. Chem. 50:988-95 (2004) (describing an amino acid sequence located in the N protein that contained a motif related to a nuclear localization signal)).

[0050] Also described herein are other N proteins and variants thereof having at least one N protein related biological activity (such as nucleic acid binding activity or the ability to specifically bind to an antibody that specifically binds to N protein). In certain embodiments, exemplary N protein immunogen fragments and variants thereof include a fragment having an amino acid sequence at positions 1-211 of SEQ ID NO:28 (SEQ ID NO:30); or at positions 212-422 of SEQ ID NO:28 (SEQ ID NO:32); or at positions 100-300 of SEQ ID NO:28 (SEQ ID NO:34). In other embodiments, an N polypeptide fragment includes an amino acid sequence at positions 50-250 of SEQ ID NO:28 (SEQ ID NO:36); or at positions 150-400 of SEQ ID NO:28 (SEQ ID NO:38). N protein immunogenic fragments also include smaller portions or fragments of the aforementioned amino acid fragments of an N protein. An N protein fragment that comprises an epitope that stimulates or elicits an immune response may comprise a sequence of consecutive amino acids ranging from any number of amino acids between 8 amino acids and 150 amino acids (e.g., 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 50, etc. amino acids) of any one of SEQ ID NO: 28, 30, 32, 34, 36, and 38.

[0051] Variants of the N polypeptide or fragments of the full-length N protein or variants thereof have at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to the amino acid sequences as set forth in any one of SEQ ID NOS:28, 30, 32, 34, 36, and 38. As described herein, an N polypeptide variant retains at least one N protein-specific activity, such as the capability to elicit a protective humoral or cell-mediated immune response against coronavirus, such as SARS-CoV, or at least one other N protein related biological activity, such as nucleic acid binding activity. In a related embodiment, the coronavirus N polypeptides have at least %, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% amino acid identity to an amino acid sequence of the full length N protein as set forth in SEQ ID NO:28 (from SARS-CoV Urbani strain, see FIG.

5; see also SEQ ID NO:27 that sets forth the nucleotide sequence that encodes the amino acid sequence of SEQ ID NO:28).

[0052] Additional examples of full-length SARS coronavirus N (nucleocapsid) polypeptide sequences are provided herein and available in the art. For example, a full-length N protein of the SARS coronavirus HB strain is provided in SEQ ID NO:55, which is encoded by the polynucleotide sequence set forth in SEQ ID NO:54.

[0053] Nucleotide sequences and amino acid sequences of two or more coronavirus polynucleotides and polypeptides and variants thereof, respectively, can be compared using any standard software program, such as BLAST, tBLAST, pBLAST, or MegAlign. Still others include those provided in the Lasergene bioinformatics computing suite, which is produced by DNASTAR® (Madison, Wis.). References for algorithms such as ALIGN or BLAST may be found in, for example, Altschul, J. Mol. Biol. 219:555-565, 1991; or Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-10919, 1992. BLAST is available at the NCBI website. Other methods for comparing multiple nucleotide or amino acid sequences by determining optimal alignment are well known to those of skill in the art (see, e.g., Peruski and Peruski, The Internet and the New Biology: Tools for Genomic and Molecular Research (ASM Press, Inc. 1997); Wu et al. (eds.), "Information Superhighway and Computer Databases of Nucleic Acids and Proteins," in Methods in Gene Biotechnology, pages 123-151 (CRC Press, Inc. 1997); and Bishop (ed.), Guide to Human Genome Computing, 2nd edition, Academic Press, Inc., 1998).

[0054] As used herein, "percent identity" or "% identity" is the percentage value returned by comparing the whole of the subject polypeptide, peptide, or variant thereof sequence to a test sequence using a computer implemented algorithm, typically with default parameters. The variant polypeptides and immunogens described herein could be made to include one or more of a variety of mutations, such as point mutations, frameshift mutations, missense mutations, additions, deletions, and the like, or the variants can be a result of modifications, such as by certain chemical substituents, including glycosylation, alkylation, etc. As used herein, "similarity" between two peptides or polypeptides is generally determined by comparing the amino acid sequence of one peptide or polypeptide to the amino acid sequence and conserved amino acid substitutes thereto of a second peptide or polypeptide.

[0055] As described herein, S or N protein immunogens, fragments, and variants thereof described herein contain an epitope that elicits or induces an immune response, preferably a protective immune response, which may be a humoral response and/or a cell-mediated immune response. A protective immune response may be manifested by at least one of the following: preventing infection of a host by a coronavirus; modifying or limiting the infection; aiding, improving, enhancing, or stimulating recovery of the host from infection; and generating immunological memory that will prevent or limit a subsequent infection by a coronavirus. A humoral response may include production of antibodies that neutralize infectivity, lyse the virus and/or infected cell, facilitate removal of the virus by host cells (for example, facilitate phagocytosis), and/or bind to and facilitate removal of viral antigenic material. A humoral response may also include a mucosal response, which comprises eliciting or inducing a specific mucosal IgA response.

[0056] Induction of an immune response in a subject or host (human or non-human animal) by a coronavirus polypeptide, fragment, or variant described herein, may be determined and characterized by methods described herein and routinely practiced in the art. These methods include in vivo assays, such as animal immunization studies (e.g., using a rabbit, mouse, ferret, civet cat, African green monkey, or rhesus macaque model), and any one of a number of in vitro assays, such as immunochemistry methods for detection and analysis of antibodies, including Western immunoblot analysis, ELISA, immunoprecipitation, radioimmunoassay, and the like, and combinations thereof. By way of example, animal models may be used for determining the capability of a coronavirus antigen to elicit and induce an immune response that is protective in animals, which may be determined by endpoints relevant to the particular model. An example of an animal model to study SARS in cynomologous macaques is described in Kuiken et al., Lancet 362:263-70 (2003). Cat and ferret animal models may also be useful for studying SARS (see, e.g., Martina et al., Nature 425:915 (2003)).

[0057] Other methods and techniques that may be used to analyze and characterize an immune response include neutralization assays (such as a plaque reduction assay or an assay that measures cytopathic effect (CPE) or any other neutralization assay practiced by persons skilled in the art) to assess whether an S or N protein immunogen or variant thereof is capable of eliciting an immune response, particularly a neutralizing immune response (see, e.g., Schmidt et al., Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, 6th ed., American Public Health Association (Washington 1989); Marra et al., Science 300:1399-404 (2003); Guo et al., Virology 324:251-56 (2004)). Briefly, an animal is immunized with an S or N protein immunogen or a composition containing at least one S protein immunogen or at least one N protein immunogen, or a cocktail composition comprising at least one S protein immunogen and at least one N protein immunogen, by subcutaneous, intraperitoneal, intranasal, intravenus or other appropriate administration described herein and practiced by persons skilled in the art. Sera are collected from immunized animals and tested for the capability of antibodies present in the sera to inhibit coronavirus infection of a cell culture monolayer (for example, infection may be measured by the number of plaques (i.e., "holes") in the monolayer arising from coronavirus causing cells to lyse (plaque reduction assay) or by determining microscopically the cytopathic effect in a CPE assay). In addition, an immune response that is elicited or induced (i.e., has changed or altered compared with the immune response prior to immunization) may be identified and characterized by determining cytokine expression patterns in animals challenged with coronavirus after immunization with one or more S or N protein immunogens described herein according to methods described herein and known to persons skilled in the art. For example, specific cytokine levels can be measured in tissues of interest by using a ribonuclease protection assay (RPA) to determine whether a type 1 or type 2 response is prevalent after immunization with an S or N protein immunogen and subsequent challenge with coronavirus. Another exemplary assay is an ELISA using OptEIA kits (BD Biosciences, San Jose, Calif.) to measure the level of one or more cytokines.

[0058] In vitro assays useful for detecting and characterizing coronavirus polypeptides and variants thereof (e.g., S protein variants or N protein variants) that retain a biological activity include, for example, competitive ELISA techniques or competitive receptor binding techniques, which may be used to identify the presence of and/or determine the function (biological activity) of the coronavirus polypeptides and variants. A coronavirus antigen (such as at least one S protein immunogen, one N protein immunogen, or at least one of each of an S and N protein immunogen that may be combined (mixed, admixed, or formulated) in a physiological excipient and/or a Proteosome-based composition as described herein, including Protollin) may evoke (induce the production of or elicit) a neutralizing antibody response that is dependent upon the presentation of an epitope present in the native coronavirus polypeptide. The presence of a conformational or sequential epitope may be determined, for example, by protein binding assays, which may include using a monoclonal antibody, or a competitive binding assay format using an antibody known to specifically bind the antigen or using a ligand (e.g., coronavirus protein, S or N protein or fragment thereof), or receptor.

[0059] A native polypeptide (or protein) herein refers to a coronavirus protein in its native conformation as it is found in an assembled virus or during assembly of the virus, that is, the protein has adopted its native topographical structure. The native conformation may also be adopted by a recombinantly expressed coronavirus polypeptide. An epitope (also referred to herein and in the art as an antigenic determinant) that induces a humoral response, that is, an antibody response, may be conformational, and thus, as found in a native coronavirus protein. Alternatively, the epitope or antigenic determinant may be sequential, that is the epitope comprises consecutive amino acids of one or more of the coronavirus protein sequences described herein. A humoral immune response may be induced by a conformational or a sequential epitope or by a combination of epitopes. A cell-mediated response that includes T cell recognition may depend on presentation of a processed coronavirus protein fragment (or fragments) that retains only the primary and secondary structure (i.e., sequential epitope).

[0060] These and other assays and methods known in the art can be used to identify and characterize S or N protein immunogens and variants thereof that have at least one epitope that elicits a protective humoral or cell-mediated immune response against coronavirus. The statistical significance of the results obtained in the various assays may be calculated and understood according to methods routinely practiced by persons skilled in the relevant art.

[0061] The coronavirus S or N protein immunogens (fulllength proteins, variants, fragments, and fusion proteins thereof), as well as corresponding nucleic acids encoding such immunogens, are provided in an isolated form, and in certain embodiments, are purified to homogeneity. As used herein, the term "isolated" means that the nucleic acid or polypeptide is removed from its original or natural environment. For example, a naturally occurring nucleic acid molecule or polypeptide encoded by the nucleic acid present in a living animal or cell is not isolated, but the same nucleic acid molecule or polypeptide is isolated when separated from some or all of the co-existing materials in the natural system. The nucleic acid molecules, for example, could be part of a vector, and/or such nucleic acids or polypeptides could be part of a composition and still be isolated in that such vector or composition is not part of the natural environment of the nucleic acid molecule or the polypeptide.

[0062] A coronavirus S or N protein immunogen (and corresponding immunogenic epitopes) and fragments, and variants thereof may be produced synthetically or recombinantly. A coronavirus protein fragment that contains an epitope that induces an immune response against coronavirus may be synthesized by standard chemical methods, including synthesis by automated procedure. In general, immunogenic peptides are synthesized based on the standard solid-phase Fmoc protection strategy with HATU as the coupling agent. The immunogenic peptide is cleaved from the solid-phase resin with trifluoroacetic acid containing appropriate scavengers, which also deprotects side chain functional groups. The crude immunogenic peptide may be further purified using preparative reverse phase chromatography. Other purification methods, such as partition chromatography, gel filtration, gel electrophoresis, or ion-exchange chromatography may be used. Other synthesis techniques known in the art may be employed to produce similar immunogenic peptides, such as the tBoc protection strategy, use of different coupling reagents, and the like. In addition, any naturally occurring amino acid or derivative thereof may be used, including D-amino acids or L-amino acids, and combinations thereof. In certain embodiments, a synthetic S protein immunogen has an amino acid sequence that is identical to, or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26. In other embodiments, a synthetic N protein immunogen of the invention will have an amino acid sequence that is identical to or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to SEQ ID NOS:28, 30, 32, 34, 36 or 38.

[0063] As described herein, the S or N protein immunogens may be recombinant, wherein desired S or N protein immunogens are individually or in combination expressed from a polynucleotide thatis operably linked to an expression control sequence (e.g., a promoter) in a nucleic acid expression construct. In certain embodiments, a recombinant S protein antigen will comprise an amino acid sequence that is identical to, or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to SEQ ID NO:2. In another embodiment, a recombinant S protein immunogen consists of an amino acid sequence as set forth in SEQ ID NO:2. In other embodiments, recombinant S protein immunogens and variants thereof are fragments of SEQ ID NO:2, which can comprise an amino acid sequence of SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26 or sequences that are identical to, or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to each of the aforementioned amino acid sequences. In certain other embodiments, a recombinant N protein immunogen and variant thereof comprises an amino acid sequence set forth in SEQ ID NO:28, or is a variant thereof, or comprises a fragment of SEQ ID NO:28, which can comprise an amino acid sequence of SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36,

and SEQ ID NO:38, or that are identical to, or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to each of these amino acid sequences.

[0064] A polynucleotide, nucleic acid, or nucleic acid molecule refers to any of single-stranded or double-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) polynucleotide, oligonucleotide, or fragment thereof. Polynucleotides may be isolated from a biological source and/or may be amplified and generated by the polymerase chain reaction (PCR). Polynucleotide fragments may be obtained from a PCR product or from an isolated polynucleotide by any of ligation, scission, endonuclease, and/or exonuclease activity. Nucleic acids may be composed of monomers that are naturally occurring nucleotides (such as deoxyribonucleotides and ribonucleotides), analogs of naturally occurring nucleotides (e.g., α -enantiorheric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have modifications in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety may be replaced with sterically and electronically similar structures, such as azasugars and carbocyclic sugar analogs. Examples of modifications of a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other wellknown heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term "nucleic acid" also includes "peptide nucleic acids," which comprise naturally occurring or modified nucleic acid bases attached to a polyamide backbone.

[0065] Further, an isolated nucleic acid molecule refers to a nucleic acid molecule (polynucleotide or nucleic acid) in the form of a separate fragment, or as a component of a larger nucleic acid construct, which has been separated from its source cell (including the chromosome it normally resides in if applicable) or virus in a substantially pure forth. For example, a DNA molecule that encodes a coronavirus polypeptide, peptide, or variant thereof, which has been separated from a coronavirus particle or from a host cell infected with or harboring coronavirus, is an isolated DNA molecule. Another example of an isolated nucleic acid molecule is a chemically synthesized nucleic acid molecule. Nucleic acid molecules may be comprised of a wide variety of nucleotides, including DNA, cDNA, RNA, nucleotide analogues, or some combination thereof.

[0066] In one embodiment, an isolated nucleic acid molecule comprises a sequence encoding an S protein immunogen comprising an amino acid sequence that is identical to or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to SEQ ID NO:2. In certain embodiments, the nucleic acid molecule encodes an S protein immunogen that has an antigenic epitope that elicits a protective immune response, which includes a humoral response (e.g., elicitation and production of mucosal IgA and/or systemic IgG or IgM or IgA) and/or a cell-mediated immune response against coronavirus. In another embodiment, an isolated nucleic acid molecule comprises a sequence encoding an S protein immunogen that has an amino acid sequence consisting of SEQ ID NO:2. In still other embodiments, an isolated nucleic acid molecule encodes an S protein immunogen fragment of SEQ ID NO:2, which fragment may comprise an amino acid sequence that is identical to or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) an amino acid sequence selected from SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26. In other embodiments, an isolated nucleic acid molecule comprises a sequence that encodes an N protein immunogen that has an amino acid sequence comprising or consisting of SEQ ID NO:28, or a variant thereof. In another embodiment, an isolated nucleic acid molecule encodes an N protein immunogen fragment of SEQ ID NO:28, which fragment can comprise an amino acid sequence that is identical to or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) an amino acid sequence set forth in any one of SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, and SEQ ID NO:38.

[0067] Also provided herein are nucleic acid vectors and constructs that include nucleotide sequences that encode coronavirus immunogens, and in particular to nucleic acid expression constructs (also called recombinant expression constructs) that include any polynucleotide encoding a coronavirus polypeptide or fragment, or variant thereof, as described herein, and regulatory nucleotide sequences. Host cells may be genetically engineered to comprise such vectors or constructs, which host cells may be produced and used in methods for treating or preventing a coronavirus infection or eliciting an immune response against a coronavirus infection. The coronavirus polypeptides and fragments or variants thereof may be expressed in mammalian cells, yeast, bacteria, or other cells (e.g., insect cells) under the control of appropriate expression control sequences, including a promoter sequence. Cell-free translation systems may also be employed to produce such coronavirus proteins using nucleic acids, including RNAs, and expression constructs. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are routinely used by persons skilled in the art and are described, for example, by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989) and Third Edition (2001), and may include plasmids, cosmids, shuttle vectors, viral vectors, and vectors comprising a chromosomal origin of replication as disclosed therein.

[0068] In one embodiment, a nucleic acid expression construct comprises an expression control sequence, such as a promoter, operably linked to a polynucleotide encoding an S protein immunogen or variant thereof comprising an amino acid sequence that is identical to or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) SEQ ID NO:2, wherein the S protein immunogen has at least one epitope that elicits a humoral response (e.g., including a neutralizing antibody) and/or cell-mediated immune response against coronavirus infection, such as a SARS coronavirus infection. In certain embodiments, a nucleic acid expression construct comprises an expression control sequence operably linked to a polynucleotide encoding an S protein

immunogen that has an amino acid sequence consisting of SEQ ID NO:2. In other embodiments, a nucleic acid expression construct comprises an expression control sequence such as a promoter sequence operably linked to at least one polynucleotide encoding at least one S protein immunogen or variant thereof that is a fragment of SEQ ID NO:2, which comprises an amino acid sequence that is identical to or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) an amino acid sequence selected from SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26.

[0069] In still other embodiments, a nucleic acid expression construct comprises an expression control sequence, such as a promoter, operably linked to at least one polynucleotide encoding at least one N protein immunogen or variant thereof or that is a fragment of an N protein immunogen or variant thereof and has an amino acid sequence that is identical to or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38. In a related embodiment, a nucleic acid expression construct comprises an expression control sequence, such as a promoter, operably linked to a polynucleotide encoding such an N protein immunogen or variant thereof, wherein the N protein immunogen has an epitope that elicits a humoral response (e.g., including a neutralizing antibody) and/or cell-mediated immune response against a coronavirus infection, for example, a SARS coronavirus infection.

[0070] As will be appreciated by those of ordinary skill in the art, a nucleotide sequence encoding a coronavirus polypeptide or variant thereof may differ from the sequences presented herein due to, for example, the degeneracy of the genetic code. A nucleotide sequence that encodes a coronavirus polypeptide variant includes a sequence that encodes a homolog or strain variant or other variant. Variants may result from natural polymorphisms or may be synthesized by recombinant methodology (e.g., to obtain codon optimization for expression in a particular host or to introduce an amino acid mutation) or chemical synthesis, and may differ from wild-type polypeptides by one or more amino acid substitutions, insertions, deletions, and the like. A polynucleotide variant that encodes a coronavirus polypeptide variant encompasses a polynucleotide preferably encodes conservative amino acid substitutions. Examples of conservative substitutions include substituting one aliphatic amino acid for another, such as Ile, Val, Leu, or Ala, or substituting one polar residue for another, such as between Lys and Arg, Glu and Asp, or Gln and Asn. A similar amino acid or a conservative amino acid substitution is also one in which an amino acid residue is replaced with an amino acid residue having a similar side chain, which include amino acids with basic side chains (e.g., lysine, arginine, histidine); acidic side chains (e.g., aspartic acid, glutamic acid); uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, histidine); nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); beta-branched side chains (e.g., threonine, valine, isoleucine), and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan). Proline, which is considered more difficult to classify, shares properties with amino acids that have aliphatic side chains (e.g.,

Leu, Val, Ile, and Ala). In certain circumstances, substitution of glutamine for glutamic acid or asparagine for aspartic acid may be considered a similar substitution in that glutamine and asparagine are amide derivatives of glutamic acid and aspartic acid, respectively.

[0071] Conservative and similar substitutions of amino acids in the coronavirus immunogen sequences disclosed herein may be readily prepared according to methods described herein and practiced in the art and which provide variants retaining similar physical properties and functional or biological activities, such as, for example, the capability to induce or elicit an immune response, which may include a humoral response (that is, eliciting antibodies that bind to and have the same biological activity as an antibody that specifically binds to the wildtype (or nonvariant) immunogen and/or that binds to antibodies that specifically bind to the wildtype or nonvariant immunogen). An S protein immunogen variant thereof preferably retains the capability to bind to cellular receptors and to mediate infectivity. An N protein immunogen and variant thereof retains, for example, the capability to complex with or bind to nucleic acids.

[0072] Certain variants include nucleic acid sequences that encode an S protein immunogen having at least 50% to 100% or greater than 90% or 95% identity or that is identical to or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) the amino acid sequence set forth in one or more of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26. Certain other variants include nucleic acid sequences that encode an N protein immunogen having at least 50% to 100% or greater than 90% or 95% identity or that is identical to or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) the amino acid sequence set forth in one or more of SEQ ID NOS:28, 30, 32, 34, 36, or 38. Polynucleotide variants also include all degenerate nucleic acid molecules that encode an S protein immunogen comprising an amino acid sequence set forth in SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or a variant thereof. In another embodiment, polynucleotide variants include all degenerate nucleic acid molecules that encode an N protein immunogen comprising an amino acid sequence set forth in SEQ ID NOS:28, 30, 32, 34, 36, or 38 or a variant thereof.

[0073] As described herein a variant of an S protein immunogen retains at least one biological or functional activity such as having the capability to elicit or induce a protective immune response that may include a humoral (including a mucosal IgA response) and/or or cell-mediated immune response. Also as described herein a coronavirus S polypeptide variant may also have a biological activity substantially similar to that of the native or wildtype S protein such as the capability to specifically bind to an S protein antibody that is a neutralizing antibody (i.e., neutralizes viral infectivity); the capability to elicit or induce the production of an antibody that specifically binds to S protein; the capability to elicit or induce the production of an antibody that has the capability to neutralize virus infection; the capability to elicit or induce a cell-mediated immune response; and/or the capability to bind to an S protein cellular receptor. As described herein an N protein immunogen variant retains at least one biological or functional activity such as having the capability to elicit or induce a protective immune response that may include a humoral

(including a mucosal IgA response) and/or cell-mediated immune response. Also as described herein a coronavirus N protein variant retains at least one biological activity substantially similar to that of the native N protein such as the capability to bind to an N protein specific antibody that is a protective antibody, for example, a neutralizing antibody, the capability to elicit or induce the production of an antibody that specifically binds to an N protein immunogen, the capability to elicit or induce an immune response (humoral and/or cell-mediated), or the capability to bind to a nucleic acid molecule such as the coronavirus genomic RNA. As described herein nucleic acid molecule variants encode S or N polypeptide derivatives or variants that have conservative amino acid substitutions such that the coronavirus polypeptide variants retain or have at least one epitope (from wild-type S or N polypeptide, respectively) capable of eliciting antibodies specific for one or more coronavirus strains, and/or that retain at least one biological activity of an S or N protein, respectively.

[0074] In certain embodiments, a nucleic acid sequence may be modified to encode a coronavirus S or N protein fragment or functional variant thereof wherein specific codons of the nucleic acid sequence have been changed to codons that are favored by a particular host and can result in enhanced levels of expression (see, e.g., Haas et al., Curr. Biol. 6:315, 1996; Yang et al., Nucleic Acids Res. 24:4592, 1996). For example, certain codons of the immunogenic peptides or polypeptides can be optimized for improved expression in Escherichia coli without changing the primary sequence of the peptides. By way of illustration and not limitation, arginine (Arg) codons of AGG/AGA can be changed to the Arg codons of CGT/CGC. Similarly, AGG/ AGA Arg codons can be changed to CGT/CGC codons. As understood in the art, codons may be optimized for the particular host in which the hybrid polypeptide is to be expressed, including bacteria, fungi, insect cells, plant cells, and mammalian cells. Additionally, codons encoding different amino acids may be changed as well, wherein one or more codons encoding different amino acids may be altered simultaneously as would best suit a particular host (e.g., codons for arginine, glycine, leucine, and serine may all be optimized, and any combination thereof). Alternatively, codon optimization may result in one or more changes in the primary amino acid sequence, such as a conservative amino acid substitution, addition, deletion, and combinations thereof.

[0075] As described herein, a polynucleotide that encodes a coronavirus S protein immunogen includes any one of the nucleotide sequences set forth in SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25, which encode the S protein immunogens having the amino acid sequences set forth in SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26, respectively. A variant polynucleotide that encodes a coronavirus S protein immunogen includes a polynucleotide that is at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical to a nucleotide sequence set forth in SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25. Such a variant polynucleotide may, because of the degeneracy of the genetic code, encode an S protein immunogen comprising an amino acid sequence set forth in SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 or 26, respectively, or may encode an S protein variant immunogen as described herein (a S protein variant immunogen retains at least one biological or functional activity such as the capability to specifically bind to an S protein antibody that is a neutralizing antibody (i.e., that neutralizes viral infectivity), to elicit or induce the production of an antibody that specifically binds to S protein, to elicit or induce the production of an antibody that has the capability to neutralize virus infection, to elicit or induce a cell-mediated immune response, and/or the capability to bind to an S protein cellular receptor). Thus in certain embodiments, isolated nucleic acids (or polynucleotides) includes variants of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25 that are substantially similar to these sequences in that the variant nucleotide sequences encode native or non-native coronavirus S polypeptides with similar structure and ability to elicit specific antibodies to at least one S protein epitope contained in the coronavirus S protein polypeptides of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26.

[0076] Also described herein are isolated nucleic acids that encode coronavirus N protein immunogens and examples of these nucleotide sequences are set forth in SEQ ID NOS: 27, 29, 31, 33, 35, and 37, which encode the polypeptides having the amino acids sequences set forth in SEQ ID NOS: 28, 30, 32, 34, 36, and 38, respectively. A variant polynucleotide that encodes a coronavirus N protein immunogen includes a polynucleotide that is at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical to a nucleotide sequence set forth in SEQ ID NOS: 27, 29, 31, 33, 35, and 37. Such a variant polynucleotide may, because of the degeneracy of the genetic code, encode an N protein immunogen comprising an amino acid sequence set forth in SEQ ID NOS: 28, 30, 32, 34, 36, or 38 or may encode a coronavirus N protein immunogen variant as described herein (which retains at least one biological or functional activity such as, for example, capability to bind to an N protein specific antibody that is a protective antibody, such as a neutralizing antibody; the capability to elicit or induce the production of an antibody that specifically binds to an N protein immunogen; the capability to elicit or induce an immune response (humoral and/or cell-mediated); or the capability to bind to a nucleic acid molecule such as the coronavirus genomic RNA). Reference to one or more isolated nucleic acids includes variants of these sequences that are substantially similar in that they encode native or non-native coronavirus N polypeptides with similar structure and have the capability to elicit specific antibodies to at least one N protein epitope contained in the coronavirus N protein-derived polypeptides of SEQ ID NOS:28, 30, 32, 34, 36, or 38. Thus in certain embodiments, isolated nucleic acids (or polynucleotides) include variants of SEQ ID NOS: 27, 29, 31, 33, 35, and 37 that are substantially similar to these sequences in that the variant nucleotide sequences encode native or non-native coronavirus N polypeptides with similar structure and ability to elicit specific antibodies to at least one N protein epitope contained in the coronavirus N protein polypeptide set forth in SEQ ID NOS:28, 30, 32, 34, 36, or 38.

[0077] As used herein, a nucleotide sequence is deemed to be "substantially similar" to a nucleotide sequence that encodes a coronavirus S protein or N protein, variant, or fragment thereof if (a) the nucleotide sequence is derived from the coding region of a coronavirus S or N protein gene (including, for example, nucleotide sequences provided herein and known in the art (such as may be found in GenBank and other sequence databases); sequences derived from different strains of a coronavirus, such as strains of

SARS coronavirus; or portions of such sequences) and contains an S or N protein epitope with substantially the same capability to elicit an immune response (humoral or cell-mediated immune response), preferably a protective immune response; (b) a polynucleotide comprising the substantially similar nucleotide sequence is capable of hybridizing to a nucleotide sequence or its complement as described herein that encodes an S or N protein immunogen under moderate or high stringency conditions; and/or (c) the nucleotide sequence is degenerate (i.e., the sequences comprise codon sequences that differ but code for the same amino acid); or (d) the sequence is a complement of any of the sequences described in (a), (b) or (c).

[0078] As used herein, two nucleotide sequences are said to "hybridize" under conditions of a specified stringency when stable hybrids are formed between substantially complementary nucleic acid sequences. Stringency of hybridization refers to a description of the environment or conditions under which hybrids are annealed and washed, which typically include ionic strength and temperature. Other factors that might affect hybridization include the probe size and the length of time the hybrids are allowed to form. For example, "high,""medium," and "low" stringency encompass the following exemplary conditions or equivalent conditions thereto: high stringency is 0.1×SSPE or SSC, 0.1% SDS, at about 65° C.; medium stringency is 0.2×SSPE or SSC, 0.1% SDS, at about 50° C.; and low stringency is 1.0×SSPE or SSC, 0.1% SDS, at about 42° C. As used herein, the term "high stringency conditions" means that one or more sequences will remain hybridized only if the hybridizing nucleotide sequences share at least 95% or at least 97% identity. Suitable moderately stringent conditions include, for example, pre-washing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-70° C., 5×SSC for 1-16 hours; followed by washing once or twice at 22-65° C. for 20-40 minutes with one or more each of 2x, 0.5× and 0.2×SSC containing 0.05-0.1% SDS. For additional stringency, conditions may include a wash in 0.1×SSC and 0.1% SDS at 50-60° C. for 15 minutes.

[0079] As known to those having ordinary skill in the art, variations in stringency of hybridization conditions may be achieved by altering the time, temperature, and/or concentration of the solutions used for pre-hybridization, hybridization, and wash steps. In addition, conditions for hybridization can be altered according to methods known in the art, for example, by adding formamide to hybridization solutions and concomitantly decreasing the temperature for hybridization.

[0080] In certain embodiments, the nucleic acid sequences that remain hybridized to a coronavirus polypeptide-encoding nucleic acid molecule encode polypeptides that retain at least one epitope of an S protein or fragment as set forth in any one of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or that retain at least one epitope of an N protein or fragment as set forth in any one of SEQ ID NOS:28, 30, 32, 34, 36, or 38, wherein one or more epitopes have substantially the same ability to elicit an immune response (humoral and/or cell-mediated immune response), preferably a protective immune response, as the native or wildtype S or N protein, respectively. An S or N protein encoded by a nucleic acid molecule that remains hybridized to the nucleotide sequence set forth in any one of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25 or in any

one of SEQ ID NOS: 27, 29, 31, 33, 35, and 37, respectively, may also exhibit at least one of any other functional or biological activities of an S or N protein, respectively, described herein.

[0081] Proteins described herein may be constructed or produced using a wide variety of techniques as described herein and practiced in the art. Methods for producing the coronavirus polypeptides include expression of the nucleic acid molecules encoding these polypeptides in a host cell. In one embodiment, a method of producing an S or N protein immunogen (having at least one epitope that elicits a protective immune response against coronavirus infection) comprises culturing a host cell containing a nucleic acid expression vector comprising at least one expression control sequence such as a promoter operably linked to a nucleic acid molecule encoding a coronavirus polypeptide, such as a coronavirus polypeptide as set forth in any one of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26 (or a variant or fragment thereof as described herein), or as set forth in any one of SEQ ID NOS:28, 30, 32, 34, 36, or 38 (or a variant or fragment thereof as described herein), under conditions and for a time sufficient for expression of the S or N immunogen, respectively. These expression vectors or vector constructs that include a polynucleotide sequence encoding the desired protein preferably is operably linked to suitable transcriptional or translational regulatory elements. Selection of appropriate regulatory elements is dependent on the host cell chosen and may be readily accomplished by one of ordinary skill in the art. Examples of regulatory elements include a transcriptional promoter and enhancer or RNA polymerase binding sequence, a transcriptional terminator, and a ribosomal binding sequence including a translation initiation signal. Optionally, the vector may include a polyadenylation sequence, one or more restriction sites, as well as one or more selectable markers such as neomycin phosphotransferase or hygromycin phosphotransferase or any other markers known in the art. Additionally, depending on the host cell chosen and the vector employed, other genetic elements such as an origin of replication, additional nucleic acid restriction sites, enhancers, sequences conferring inducibility of transcription, and selectable markers, may also be incorporated into the vectors described herein.

[0082] Bacterial expression vectors preferably comprise a promoter that functions in the host cell, one or more selectable phenotypic markers, and a bacterial origin of replication. In certain embodiments, the nucleic acid expression constructs described herein have an inducible promoter, which may be lac, tac, trc, ara, trp, λ phage, T7 phage, and T5 phage promoter, or may be a T5 phage promoter/lac operator expression control sequence (plasmid pT5) as described in U.S. Patent Application Publication No. 2003/ 0143685. The expression control sequence refers to any sequence sufficient to allow expression of a protein of interest in a host cell, including one or more promoter sequences, enhancer sequences, operator sequences (e.g., lacO), and the like. In certain embodiments, the coronavirus polypeptide-encoding nucleic acid (such as a nucleic acid encoding an S or N protein immunogen, or a variant thereof) is incorporated into a plasmid, such as plasmid pT5, and the host cell is a bacterium, for example, Escherichia coli.

[0083] Other representative promoters include the β -lactamase (penicillinase) and lactose promoter system (see Chang et al., *Nature* 275:615, 1978), the T7 RNA poly-

merase promoter (Studier et al., Meth. Enzymol. 185:60-89, 1990), the lambda promoter (Elvin et al., Gene 87:123-126, 1990), the trp promoter (Nichols and Yanofsky, Meth. in Enzymology 101:155, 1983), and the tac promoter (Russell et al., Gene 20:231, 1982). Additional promoters include promoters capable of recognizing the T4, T3, Sp6 and T7 polymerases, the $P_{\rm R}$ and $P_{\rm L}$ promoters of bacteriophage lambda, the recA, heat shock, lacUV5, tac, lpp-lacSpr, phoA, and lacZ promoters of E. coli, promoters of B. subtilis, the promoters of the bacteriophages of Bacillus, Streptomyces promoters, the int promoter of bacteriophage lambda, the bla promoter of pBR322, and the CAT promoter of the chloramphenicol acetyl transferase gene. Prokaryotic promoters have been reviewed by Glick, J. Ind. Microbiol. 1:277, 1987, Watson et al., Molecular Biology of the Gene, 4th Ed. (Benjamin Cummins 1987), and by Ausubel et al. (1995). Representative selectable markers include various antibiotic resistance markers such as the kanamycin or ampicillin resistance genes. Many plasmids suitable for transforming host cells are well known in the art, including among others, pBR322 (see Bolivar et al., Gene 2:95, 1977), the pUC plasmids pUC18, pUC19, pUC118, pUC119 (see Messing, Meth. in Enzymology 101:20-77, 1983 and Vieira and Messing, Gene 19:259-268, 1982), and pNH8A, pNH16a, pNH18a, and Bluescript M13 (Stratagene, La Jolla, Calif.).

[0084] In certain embodiments, the S and N protein immunogens or variants thereof are expressed in the same cell, or from the same expression vector, or from the same expression vector as a hybrid fusion polypeptide. Further, mutations may be introduced at particular loci by synthesizing oligonucleotides that contain a mutant sequence that are flanked by restriction sites, enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes a derivative or variant having the desired amino acid insertion, substitution, or deletion.

[0085] Alternatively, oligonucleotide-directed site-specific (or segment specific) mutagenesis procedures may be employed to provide an altered polynucleotide having particular codons altered according to the substitution, deletion, or insertion. Exemplary methods of making the alterations set forth above are disclosed by Walder et al. (Gene 42:133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); and Sambrook et al. (supra). Deletion or truncation derivatives of proteins (e.g., a soluble extracellular portion) may also be constructed by using convenient restriction endonuclease sites adjacent to the desired deletion. Subsequent to restriction, overhangs may be filled in and the DNA religated. Exemplary methods of making the alterations set forth above are disclosed by Sambrook et al. (Molecular Cloning: A Laboratory Manual, 3d Ed., Cold Spring Harbor Laboratory Press (2001)).

[0086] Mutations that are made in the nucleic acid molecules preferably preserve the reading frame of the coding sequences. Furthermore, the mutations will preferably not create complementary regions that when transcribed could hybridize to produce secondary mRNA structures, such as loops or hairpins, which would adversely affect translation of the mRNA. Although a mutation site may be predetermined, the nature of the mutation need not per se be predetermined. For example, in order to select for optimum characteristics of mutants at a given site, random mutagenesis may be conducted at the target codon and the expressed mutants screened for gain, loss, or retention of biological activity. Alternatively, mutations may be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes a derivative having the desired amino acid insertion, substitution, or deletion. Nucleic acid molecules that encode proteins of the present invention may also be constructed using techniques such as polymerase chain reaction (PCR) mutagenesis, chemical mutagenesis (Drinkwater and Klinedinst, Proc. Natl. Acad. Sci. USA 83:3402-3406, 1986); forced nucleotide misincorporation (e.g., Liao and Wise Gene 88:107-111, 1990); or use of randomly mutagenized oligonucleotides (Horwitz et al., Genome 3:112-117, 1989).

[0087] Vector constructs comprising cloned polynucleotide sequences encoding any one of the coronavirus proteins described herein can be introduced into cultured mammalian cells by, for example, liposome-mediated transfection, calcium phosphate-mediated transfection (Wigler et al., Cell 14:725, 1978; Corsaro and Pearson, Somatic Cell Genetics 7:603, 1981; Graham and Van der Eb, Virology 52:456, 1973), electroporation (Neumann et al., EMBO J. 1:841-845, 1982), or DEAE-dextran mediated transfection (Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987); retroviral, adenoviral and protoplast fusion-mediated transfection (see Sambrook et al., supra). To identify cells that have been stably transfected with the vector containing the cloned DNA, a selectable marker is generally introduced into the cells along With the polynucleotide of interest. Preferred selectable markers for use in cultured mammalian cells include genes that confer resistance to drugs, such as neomycin, hygromycin, and methotrexate. The selectable marker may be an amplifiable selectable marker. Preferred amplifiable selectable markers are the DHFR gene and the neomycin resistance gene. Selectable markers are reviewed by Thilly (Mammalian Cell Technology, Butterworth Publishers, Stoneham, Mass.).

Multivalent Vaccines

[0088] The polynucleotides and host cells described herein may be used to make multivalent immunogens, which may be used for example, as multivalent vaccines, and which may comprise at least one S protein immunogen, or one or more S protein immunogens, that is, a mixture or combination of a plurality of different S protein immunogens. In another embodiment, a multivalent vaccine comprises at least one N protein immunogen, or one or more N protein immunogens, that is, a mixture or combination of a plurality of different N protein immunogens. Alternatively, a multivalent vaccine may comprise a combination of one or more S protein immunogens with one or more coronavirus N protein immunogens and/or other coronavirus immunogens, such as M protein. In another embodiment, the multivalent vaccine is a multivalent hybrid vaccine and comprises at least two or a plurality of the aforementioned immunogens that are linked in some manner, such as for example, fused in frame as a fusion protein. In addition, the immunogen fusion protein may have one or more immunogens reiterated at least once within the fusion protein (such that the at least one immunogen is contained at least at two locations in the fusion protein), which reiteration may occur at the amino- or carboxy-terminal of the selected multivalent immunogen polypeptide, or internal to the multivalent fusion protein. For example, such multivalent hybrid coronavirus immunogens (multivalent fusion proteins) may comprise (1) one or more S protein immunogens or polypeptide fragments of the S protein as described herein (such as for example SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26, and variants and fragments thereof); (2) one or more N protein immunogens or polypeptide fragments of the N protein as described herein (such as, for example, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, and SEQ ID NO:38, and variants and fragments thereof); (3) or one or more S protein immunogens (or fragments thereof) and one or more N protein immunogens (or fragments thereof). At least two or more of a coronavirus S protein immunogen or at least two or more of a coronavirus N protein immunogen is considered a plurality of S protein immunogens or N protein immunogens, respectively. In other embodiments, a multivalent hybrid coronavirus immunogen is combined with an adjuvant, such as Proteosome or Protollin, or with adjuvants such as alum, Freund's adjuvant, or Ribi adjuvants (Corixa Corporation, Seattle, Wash.).

[0089] Further, such multivalent hybrid coronavirus immunogen vaccine compositions may combine immunogenic epitopes from different coronavirus antigenic groups, for example, group 1 (e.g., transmissible gastroenteritis virus, TGEV; human respiratory coronavirus, HcoV-229E); group 2 (e.g., mouse hepatitis virus, MHV); group 3 viruses (e.g., avian IBV); and SARS group (e.g., SARS-CoV strains Tor2 (see GenBank Accession No. AY274119); Urbani (see GenBank Accession No. AY278741); Frankfurt 1 (see GenBank Accession No. AY291315), TW5 (see GenBank Accession No. AY2928); BJ01 (see GenBank Accession No. AY502928); BJ01 (see GenBank Accession No. AY502928); BJ01 (see GenBank Accession No. AY502928); GD03T0013 (see GenBank Accession No. AY525636); etc.); or a combination thereof (or any other coronavirus group identified that, for example, infects humans).

[0090] In certain embodiments, the same or different coronavirus immunogens may be linked by at least two amino acids encoded by a nucleic acid sequence that is a restriction enzyme recognition site, wherein the restriction sites may be any one or more of BamHI, ClaI, EcoRI, HindIII, KpnI, NcoI, NheI, PmII, PstI, SalI, XhoI, and the like. Additional amino acid linkers may also be added synthetically as described herein. Preferably, the additional amino acids do not create any identity in sequence within a five amino acid stretch of a human protein. In addition, the hybrid coronavirus immunogen polypeptides may further comprise at least one additional carboxy-terminal amino acid, wherein the additional amino acid is a D-amino acid or an L-amino acid. Any of the twenty naturally occurring amino acids or derivatives thereof may be added, such as cysteine, histidine, leucine, and glutamic acid. For example, the addition of at least one cysteine residue at the carboxy terminal end of the fusion polypeptide may be useful for attachment or linkage of other constituents, such as a lipid, a carrier protein, a tag, an enzyme, and the like.

[0091] In certain embodiments, a coronavirus S protein immunogen and/or a coronavirus N protein immunogen is

linked to a second amino acid sequence; in a certain particular embodiment the S protein immunogen and/or a coronavirus N protein immunogen is fused in frame with a second amino acid sequence. The second amino acid sequence may comprise a carrier protein (for example, proteins and polypeptides understood in the art to facilitate increased or improved immunogenicity of an antigen), a tag (such as a histidine tag), or an enzyme.

[0092] As described herein, a coronavirus immunogen fusion protein may comprise an S or N protein immunogen, fragment, or variant thereof fused to an additional functional or non-functional non-coronavirus polypeptide sequence that permits, for example, detection, isolation, or purification of the hybrid polypeptide fusion proteins. For instance, an additional functional polypeptide sequence may be a tag sequence, which in certain embodiments allows that the fusion protein may be detected, isolated, and/or purified by protein-protein affinity (e.g., receptor-ligand), metal affinity, or charge affinity methods. In certain other embodiments, the hybrid polypeptide fusion proteins may be detected by specific protease cleavage of a fusion protein having a sequence that comprises a protease recognition sequence, such that the hybrid coronavirus polypeptide may be separable from the additional polypeptide sequence. In addition, the hybrid polypeptides may be made synthetically including additional amino acids, a carrier protein, a hydrophobic portion (e.g., a lipid), or a tag sequence, which may be located at either the amino- or carboxy-terminal end. In one embodiment, for example, recombinant coronavirus immunogens are fused in-frame to a tag, which tag may be any one of alkaline phosphatase, thioredoxin, β-galactosidase, hexahistidine (6×His), FLAG® epitope tag (DYKDDDDK, SEQ ID NO:40), or GST, and the like.

[0093] In certain embodiments the tag that is fused to a hybrid coronavirus polypeptide fusion protein facilitates affinity detection and isolation of the hybrid coronavirus polypeptide fusion protein, and may include, for example, poly-His or the defined antigenic peptide epitopes described in U.S. Pat. No. 5,011,912 and in Hopp et al., (1988 Bio/Technology 6:1204), or the XPRESSTM epitope tag (DLYDDDDK, SEQ ID NO:41; Invitrogen, Carlsbad, Calif.), or thioredoxin. The affinity sequence may be a hexa-histidine tag as supplied by a vector. For example, a pBAD/His (Invitrogen) or a pQE-30 (Qiagen, Valencia, Calif.) vector can provide a polyhistidine tag for purification of the mature protein fusion from a particular host, such as a bacterium, using a nickel affinity column. Alternatively, the affinity sequence may be added either synthetically or engineered into the primers used to recombinantly generate the nucleic acid sequence (e.g., using the polymerase chain reaction) encoding an immunogenic polypeptide of a coronavirus. For example, in one embodiment, coronavirus immunogens are fused to a thioredoxin and the coronavirus immunogen-thioredoxin fusion protein is encoded by a recombinant nucleic acid sequence.

Therapeutic Formulations and Methods of Use

[0094] In certain embodiments, pharmaceutical compositions are provided that contain one or more coronavirus immunogens, which may be used to elicit or induce an immune response against coronavirus. Such compositions may be used in methods for treating and/or preventing a coronavirus infection by administering to a subject an S

protein immunogen, fragment, or variant thereof, an S immunogen fusion protein or multivalent immunogen, or a mixture of such immunogens at a dose sufficient to elicit antibodies specific for coronavirus, as described herein. In another embodiment, a method for treating and/or preventing a coronavirus infection comprises administering to a subject an N protein immunogen, fragment, or variant thereof, an N immunogen fusion protein or multivalent immunogen, or a mixture of such immunogens at a dose sufficient to elicit antibodies specific for a coronavirus. In still another embodiment, a method for treating and/or preventing a coronavirus infection comprises administering to a subject at least one S protein immunogen and at least one N protein immunogen (or a variant or fragment of an S or N protein immunogen); or a fusion protein or multivalent immunogen that comprises at least one S protein immunogen and at least one N protein immunogen; or a mixture or cocktail of such immunogens.

[0095] As described herein, methods are provided for treating and/or preventing a coronavirus infection. In certain embodiments, one or more coronavirus protein antigens (immunogens) are administered to a subject or host that has a coronavirus infection or is at risk for developing a coronavirus infection. Administration of at least one coronavirus protein (e.g., an S protein immunogen and/or an N protein immunogen) preferably induces or stimulates a protective immune response. A protective immune response as described herein may include a humoral response, that is, administration of the coronavirus protein (immunization) to a subject stimulates or elicits the production of antibodies that specifically bind to the coronavirus protein. Stimulation or elicitation of a humoral response preferably includes production of antibodies that are neutralizing antibodies, which neutralize coronavirus infectivity. A humoral response may also include a mucosal immune response, which comprises production of mucosal IgA antibodies that are specific for coronavirus, and may include production of any one of the various immunoglobulin classes, including IgM, IgG, and IgA that can be detected in sera of a subject or host. Administration of at least one coronavirus protein immunogen may also induce a cell-mediated response, which includes stimulation of T cells, production of immunostimulatory molecules such as cytokines produced by immune cells, and clonal expansion of specific T cells in response to the specific coronavirus protein immunogen.

[0096] In one embodiment, a composition that is useful as an immunogenic composition for treating and/or preventing a coronavirus infection contains at least one coronavirus antigen (immunogen) as described herein (including multivalent vaccines and multivalent hybrid fusion proteins) capable of eliciting an immune response and Protollin or Proteosome adjuvant (see, e.g., U.S. Pat. Nos. 5,726,292 and 5,985,284, and U.S. Patent Application Publication Nos. 2001/0053368 and 2003/0044425). As is understood in the art, an adjuvant may enhance or improve the immunogenicity of an immunogen (that is, act as an immunostimulant), and many antigens are poorly immunogenic unless combined or admixed or mixed with an adjuvant. A variety of sources can be used as a source of antigen, such as liveattenuated virus, killed virus, split antigen preparations, subunit antigens, recombinant or synthetic viral antigens, and combinations thereof. To maximize the effectiveness of a subunit, recombinant, or synthetic vaccine, the antigens can be combined with a potent immunostimulant or adjuvant. Other exemplary adjuvants include alum (aluminum hydroxide, REHYDRAGEL®); aluminum phosphate; virosomes; liposomes with and without Lipid A; Detox (Ribi/Corixa); MF59; or other oil and water emulsions type adjuvants, such as nanoemulsions (see, e.g., U.S. Pat. No. 5,716,637) or submicron emulsions (see, e.g., U.S. Pat. No. 5,961,970); and Freund's complete and incomplete adjuvant.

[0097] A Proteosome-based adjuvant (i.e., Protollin or Proteosome) can be used in vaccine compositions or formulations that may include any one or more of a variety of coronavirus antigen (immunogen) sources as described herein. Proteosomes are comprised of outer membrane proteins (OMP) from Neisseria species typically, but can be derived from other Gram-negative bacteria (see, e.g., Lowell et al., J. Exp. Med. 167:658, 1988; Lowell et al., Science 240:800, 1988; Lynch et al., Biophys. J. 45:104, 1984; U.S. Pat. No. 5,726,292; U.S. Pat. No. 4,707,543). Proteosomes have the capability to auto-assemble into vesicle or vesiclelike OMP clusters of 20-800 nm, and to noncovalently incorporate, coordinate, associate, or otherwise cooperate with protein antigens, particularly antigens that have a hydrophobic moiety. Proteosomes are hydrophobic, safe for human use, and comparable in size to certain viruses. By way of background, and not wishing to be bound by theory, mixing Proteosomes with an antigen such as a protein antigen, provides a composition comprising non-covalent association or coordination between the antigen and Proteosomes, which association or coordination forms when solubilizing detergent is selectively removed or reduced in concentration, for example, by dialysis. Proteosomes may be prepared as described such as in U.S. Patent Application Nos. 2001/0053368 and 2003/0044425.

[0098] Any preparation method that results in the outer membrane protein component in vesicular or vesicle-like form, including molten globular-like OMP compositions of one or more OMP, is included within the definition of "Proteosome." In one embodiment, the Proteosomes are from *Neisseria* species, and more preferably from *Neisseria meningitidis*. In certain other embodiments, Proteosomes may be an adjuvant and an antigen delivery composition. In a preferred embodiment, an immunogenic composition comprises one or more coronavirus antigens and an adjuvant, wherein the adjuvant comprises Projuvant or Protollin. As described herein, a cell infected by the coronavirus, or from a recombinant source and/or may comprise, for example, a (detergent) split antigen.

[0099] In certain embodiments, an immunogenic composition further comprises a second immunostimulant, such as a liposaccharide. That is, the adjuvant may be prepared to include an additional immunostimulant. For example, the Projuvant may be mixed with a liposaccharide to provide an OMP-LPS adjuvant. Thus, the OMP-LPS (Protollin) adjuvant can be comprised of two components. The first component includes an outer membrane protein preparation of Proteosomes (i.e., Projuvant) prepared from Gram-negative bacteria, such as *Neisseria meningitidis*, and the second component includes a preparation of liposaccharide. The liposaccharide may be prepared as described in U.S. Patent Application Nos. 2001/0053368 and 2003/0044425. It is also contemplated that the second component may include lipids, glycolipids, glycoproteins, small molecules or the like, and combinations thereof.

[0100] As described herein, the two components of an OMP-LPS adjuvant may be combined (admixed or formulated) at specific initial ratios to optimize interaction between the components, resulting in stable association and formulation of the components for use in the preparation of an immunogenic composition. The process generally involves the mixing of components in a selected detergent solution (e.g., Empigen® BB, Triton® X-160, or Mega-10) and then effecting complex formation of the OMP and LPS components while reducing the amount of detergent to a predetermined, preferred concentration by dialysis or by diafiltration/ultrafiltration methodologies. Mixing, co-precipitation, or lyophilization of the two components may also be used to effect an adequate and stable association, composition, or formulation. In one embodiment, an immunogenic composition comprises one or more coronavirus antigens and an adjuvant, wherein the adjuvant comprises a Projuvant (i.e., Proteosome) and liposaccharide.

[0101] In a particular embodiment, the final liposaccharide content by weight as a percentage of the total Proteosome protein can be in a range from about 1% to about 500%, more preferably in range from about 10% to about 200%, or in a range from about 30% to about 150%. Another embodiment includes an adjuvant wherein the Proteosomes are prepared from Neisseria meningitidis and the liposaccharide is prepared from Shigella flexneri or Plesiomonas shigelloides, and the final liposaccharide content is between 50% to 150% of the total Proteosome protein by weight. In another embodiment, Proteosomes are prepared with endogenous lipooligosaccharide (LOS) content ranging from about 0.5% up to about 5% of total OMP. In another embodiment Proteosomes have endogenous liposaccharide in a range from about 12% to about 25%, and in still another embodiment the endogenous liposaccharide is between about 15% and about 20% of total OMP. The instant disclosure also provides a composition containing liposaccharide derived from any Gram-negative bacterial species, which may be from the same Gram-negative bacterial species that is the source of Proteosomes or may be from a different bacterial species.

[0102] In certain embodiments, the Proteosome or Protollin to coronavirus antigen ratio in the immunogenic composition is greater than 1:1, greater than 2:1, greater than 3:1 or greater than 4:1. In other embodiments, Proteosome or Protollin to coronavirus antigen ratio in the immunogenic composition is about 1:1, 2:1, 3:1, or 4:1. The ratio can be 8:1 or higher. In other embodiments, the ratio of Proteosome or Protollin to coronavirus antigen of the immunogenic composition ranges from about 1:1 to about 1:500, and is at least 1:5, at least 1:10, at least 1:20, at least 1:50, or at least 1:100, or at least 1:200. An advantage of Protollin:coronavirus antigen ratios ranging from 1:2 to 1:200 is that the amount of Proteosome-based adjuvant can be reduced dramatically with no significant effect on the ability of a coronavirus antigen to elicit an immune response.

[0103] In another embodiment, a composition comprises one or more coronavirus S protein immunogens combined (admixed or formulated) with Proteosome or Protollin, wherein the S protein immunogen comprises an amino acid sequence that is identical to, or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to SEQ ID NO:2 or fragment thereof and wherein the S protein immunogen or fragment thereof has an epitope that elicits a protective immune response against coronavirus infection. An exemplary S protein immunogen comprises an amino acid sequence as set forth in SEQ ID NO:2 or consisting of SEQ ID NO:2. In other embodiments, an S protein immunogen is a fragment of SEQ ID NO:2, which fragment comprises an amino acid sequence that is identical to, or at least 80% identical (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to an amino acid selected from SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26.

[0104] In other embodiments, immunogenic compositions are comprised of one or more coronavirus N protein immunogens, fragments, or variants, thereof and an adjuvant, wherein the adjuvant comprises Proteosomes or Protollin. In certain embodiments, the N protein immunogen comprises the amino acid sequence set forth in SEQ ID NO:28, and in certain other embodiments, the composition comprises an N protein immunogen variant that has a sequence at least 80% that is identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) the amino acid sequence set forth in SEQ ID NO:28. Exemplary N protein immunogens or variants thereof for use in these immunogenic compositions include amino acid sequences that are fragments of SEQ ID NO:28, and that, for example, comprise an amino acid sequence of SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, or sequences at least 80% identical to these sequences (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%).

[0105] In another embodiment, immunogenic compositions are comprised of at least one (one or more) coronavirus S immunogen, fragment, or variant, thereof and at least one (one or more) coronavirus N protein immunogen, fragment, or variant, thereof and an adjuvant, wherein the adjuvant comprises Projuvant or Projuvant and liposaccharide.

[0106] Alternatively, any S or N protein immunogen or any combination of S and N protein immunogens as described herein can be combined (admixed or formulated) in an immunogenic composition with a liposome. Preferably, liposomes that contain one or more coronavirus immunogens further comprise *Deinococcus radiodurans* lipids or α -galactosylphosphotidylglycerolalkylamine. The addition of such lipids in a liposome can enhance the efficacy of a coronavirus vaccine composition by increasing protective immunity.

[0107] Coronavirus polypeptides and immunogens of the present invention may further include a covalently attached hydrophobic portion. A hydrophobic portion may be, for example, an amino acid sequence or a lipid, as disclosed in U.S. Pat. No. 5,726,292. Naturally occurring coronavirus S protein and a recombinantly expressed S protein having the sequence set forth in SEQ ID NO:2 contains a hydrophobic transmermbrane domain (from about amino acid 1195 to about 1240 of SEQ ID NO:2), which may function as a hydrophobic portion with an S protein immunogen fragment (e.g., SEQ ID NOS:16 or 18 can have the hydrophobic

transmembrane domain from S protein fused thereto) or N protein immunogen (e.g., SEQ ID NOS:30 or 32 can have the hydrophobic transmembrane domain from S protein fused thereto). In one embodiment, a coronavirus composition (e.g., a vaccine composition) comprises a coronavirus S protein or N protein immunogen, or variant thereof, combined, admixed, complexed, or formulated with a Proteosome (see, e.g., U.S. Pat. Nos. 5,726,292 and 5,985,284) or Protollin (see, e.g., U.S. Patent Application No. 2003/ 0044425), wherein the S or N protein immunogen further comprises a hydrophobic portion or foot. When combined with a Proteosome, the S or N protein immunogens preferably include a hydrophobic portion, which may be composed of a hydrophobic amino acid sequence or a lipid (as used herein, lipid refers to a solubility characteristic and, therefore, includes alkyls, arylalkls, aryls, fatty acids, glycerides and glyceryl ethers, phospholipids, sphingolipids, long chain alcohols, steroids, vitamins, and the like). In one embodiment, the hydrophobic portion of S protein (e.g., the transmembrane domain) can be fused to a coronavirus N protein immunogen. In certain other embodiments, the S or N protein immunogens, with or without a hydrophobic portion, may further contain a second amino acid sequence to form a fusion protein, wherein the second amino acid sequence is a tag, carrier, or enzyme, as described herein. In still other embodiments, the S and N immunogens can be combined in an immunogenic composition, as separate components or fused to form a hybrid, multivalent immunogen, with or without a hydrophobic portion, and further with, or alternatively with, a second amino acid sequence as described herein.

[0108] In other embodiments, immunogenic compositions may comprise (Projuvant or Protollin), or further comprise, components (e.g., receptor ligands) capable of stimulating a host immune response by interacting with certain receptors (e.g., Toll-like receptors, TLR) produced by one or more host cells of a vaccine recipient. According to one embodiment, compositions comprising immunogenic epitopes of a coronavirus protein may contain polypeptide epitopes capable of interacting with Toll-like receptors (TLRs), thereby promoting an innate immune response, which may or may not evoke a subsequent adaptive immune response.

[0109] An innate immune response is a nonspecific protective immune response that is not a specific antigendependent or antibody-dependent response (that is, does not involve clonal expansion of T cells and/or B cells) and may be elicited by any one of numerous antigens, immunogens, or coronaviruses described herein. An immunostimulatory composition described herein comprises Proteosomes and liposaccharide (Protollin), either one of which or both may elicit a nonspecific protective response. Without wishing to be bound by theory, one or more components of vaccine compositions or formulations disclosed herein may interact with Toll-like receptors (TLRs) associated with an innate or adaptive immune response of a vaccine recipient. At least 10 TLRs are described (see, e.g., Takeda et. al., Annu. Rev. Immunol. 21:335, 2003). One or more ligands that interact with and subsequently activate certain TLRs have been identified, with the exception of TLR8 and TLR10. Certain outer membrane proteins of Neisseria meningitidis, for example OMP 2 (also referred to as Por B), interact with TLR2, while LPS of most but not all Gram-negative bacteria interacts with TLR4. Accordingly, one activity of vaccine compositions or formulations described herein, which may contribute to a biological effect, includes activation of one or both of TLR2 and TLR4. Activation of other TLRs (other than TLR2 and TLR4) may serve a similar function or further enhance the qualitative or quantitative profile of cytokines expressed, and may be associated with a host Th1/Th2 immune response. It is also contemplated that TLR ligands other than LPS and Por B may be used alone or in combination to activate TLR2 or TLR4. The qualitative or quantitative activation of one or more TLRs is expected to elicit, effect, or influence a relative stimulation (balanced or imbalanced) of a Th1 (type 1) or Th2 (type 2) immune response, with or without a concomitant humoral antibody response. Ligands interacting with TLRs other than TLR2 and TLR4 may also be used in vaccine compositions described herein. Such vaccine components may, alone or in combination, be used to influence the development of a host immune response sufficient to treat or protect from virus infection, as set forth herein. Such TLRs and associated ligands are known in the art, which include those presented in Table 1.

TABLE 1

LKS and Ligands	`LRs	and	Ligands	
-----------------	------	-----	---------	--

TLR family	Ligands
TLR1	Soluble factors (e.g., <i>Neisseria meningitidis</i>)
TLR2	Lipoproteins and lipopeptides
	Atypical LPS (e.g., Leptospira interrogans, P. gingivalis)
	Peptidoglycan (Gram-positive bacteria)
	Lipoteichoic acid (Gram-positive bacteria)
	HSP70 (host)
	Glycolipids (e.g., Treponema maltophilum)
TLR3	Double-stranded RNA (e.g., viral)
TLR4	LPS (Gram-negative bacteria)
	Taxol (plant)
	HSP60 (host)
	HSP70 (host)
	HSP60 (Chlamydia pneumoniae)
	Fibrinogen (host)
TLR5	Flagellin (bacteria)
ILR6	Di-acyl lipopeptides (mycoplasma)
ILK/	Imidazoquinoline (synthetic compounds)
	Despiriming (synthetic compounds)
TIDO	Ligand yet to be identified
TIRO	CpG DNA (bacteria)
TI R10	Ligand yet to be identified
I LILLI	Ingalia jet to be identified

[0110] Any one or any combination of the identified TLRs (Table 1) may be activated by any one or any combination of TLR ligand components added to, combined with, or formulated in a vaccine composition comprising a coronavirus S protein immunogen, N protein immunogen, or both an at least one S protein immunogen and an N protein immunogen as described herein. The stimulation of any one or a multiplicity of TLRs may be accomplished using any one or a multiplicity of TLR ligands at concentrations suitable with the route of administration (e.g., intranasal, injection, etc.). Therefore, a vaccine composition or formulation may include any one or more TLR ligand(s), including recombinant ligands (fusion proteins or fragments thereof) combined or formulated with an antigenic (immunogenic) vaccine component, with or without addition of an exogenous liposaccharide component.

[0111] An efficient immune response depends on the communication between the innate and adaptive immune responses. The T lymphocyte is important for coordinating the adaptive immune response by controlling the release of effector molecules. For example, T helper (Th) 1 cells produce interleukin-2 (IL-2), tumor necrosis factor alpha (TNF- α), and interferon gamma (IFN- γ), which are important for the development of cell-mediated immunity (Mosmann et al., *J. Immunol.* 136: 2348, 1986; Street and Mosmann, *FASEB J.* 5: 171, 1991). In contrast, Th2 cells produce IL-4, IL-13, IL-5, IL-9, IL-6 and IL-10. These effector molecules can be readily measured in a biological sample from a subject or host immunized with any of the coronavirus immunogens described herein according to methods routinely practiced by persons skilled in the art.

[0112] A cell mediated immune (CMI) response includes determining whether an immune response has shifted from a predominantly Th2 response to a balanced or mixed Th1 and Th2 response (due to a an increase in Th1 response or concomitant increase in Th1 and decrease in Th2 response), or to a predominantly Th1 response. Similarly, a shift from a Th1 response to a balanced or mixed Th1/Th2 response or an increased or predominant Th2 response may be determined. For example, levels of Th1 cytokines, such as IFN- γ , IL-2, and TNF- β , and Type 2 cytokines, such as IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13, may be determined according to methods described herein and practiced in the art, including ELISA, ELISPOT, and flow cytometry (to measure intracellular cytokines). Type 1 responses are predictive of induction of other CMI-associated responses, such as development of cytotxic T cells (CTLs), which are indicative of Th1 immunity. Immune cell proliferation and clonal expansion resulting from an antigen-specific elicitation or stimulation of an immune response may be determined by isolating lymphocytes, such as spleen cells or cells from lymph nodes, stimulating the cells with antigen, and measuring cytokine production, cell proliferation and/or cell viability, such as by incorporation of tritiated thymidine or nonradioactive assays, such as MTT assays and the like.

[0113] The immunostimulatory, immunogenic, and/or immunomodulatory compositions described herein may induce specific anti-antigen immune response, including one or more of the following. A specific humoral response may be elicited, induced, or stimulated that results in production of antigen specific antibodies, which may include any class of immunoglobulin, including IgG, IgA, IgM, and/or IgE, and isotypes of the classes. For example, the presence of specific IgM, IgG, and IgA, in serum, nasal wash, lung lavage, and in mucosal secretions (particularly IgA), or other tissues may be determined by any of a variety of immunoassays described herein and known in the art, including but not limited to, ELISA, immunoblot, radioimmunoassay, immunohistochemistry, fluorescence activated cell sorting (FACS), Ochterlony, and the like. For detection of antigen or coronavirus specific antibodies in an immunoassay, the biological sample may be permitted to interact with or contact an antigen that is purified, isolated, partially isolated, or a fragment thereof, or to interact with or contact the virus, which may be fixed (such as with ethanol or formaldehyde) or unfixed or non-denatured. Mucosal secretions include those collected from the respiratory tract, including the nasopharynk and lungs. Functional assays may also be performed, such as the ability of an antigen-specific antibody to facilitate phagocytosis or opsonization of a microorganism, or to prevent entry of a microorganism into a host cell, or to prevent entry, fusion, or propagation of a microorganism such as a virus in a host cell. Such methods are described herein and are routinely practiced by skilled artisans.

[0114] The pharmaceutical composition will preferably include at least one of a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, in addition to at least one (one or more) coronavirus immunogen or fusion protein thereof and, optionally, other components. For example, pharmaceutically acceptable carriers suitable for use with a composition of S protein immunogens or fusion proteins thereof, or cocktail of two or more S protein immunogens or fusion proteins thereof, or cocktail of S, N, and/or M immunogens or fusion proteins thereof. Pharmaceutically acceptable carriers for therapeutic use are well known in the pharmaceutical art, for example, see Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro, ed., 18th Edition, 1990) and in CRC Handbook of Food, Drug, and Cosmetic Excipients, CRC Press LLC (S. C. Smolinski, ed., 1992). The compositions may also include a thickening agent, a buffering agent, a solvent, a humectant, a preservative, a chelating agent, an adjuvant, and the like, and combinations thereof.

[0115] A pharmaceutically acceptable salt refers to salts of compounds derived from the combination of such compounds and an organic or inorganic acid (acid addition salts) or an organic or inorganic base (base addition salts). Compounds may be used in either the free base or salt forms.

[0116] In addition, the pharmaceutical composition may further include a diluent such as water or phosphate buffered saline (PBS). In certain embodiments the diluent is PBS formulated to deliver into the host a final phosphate concentration and a final sodium chloride concentration that is physiological. PBS may have a final phosphate concentration range from about 0.1 mM to about 50 mM, more preferably from about 0.5 mM to about 40 mM, even more preferably from about 1 mM to about 25 mM, and most preferably from about 2.5 mM to about 10 mM; the final salt concentration ranges from about 100 mM to about 200 mM and most preferably from about 125 mM to about 175 mM. Preferably, the final PBS concentration is about 5 mM phosphate and about 150 mM salt (such as NaCl). In certain embodiments, any of the aforementioned pharmaceutical compositions comprise a cocktail of coronavirus immunogens as described herein, and which are preferably sterile.

[0117] A composition described herein can be made sterile by either preparing the composition under an aseptic environment and/or by terminally sterilizing the composition using methods available in the art. Many pharmaceuticals are manufactured to be sterile and this criterion is defined by the. USP XXII <1211>. Sterilization in this embodiment may be accomplished by a number of means accepted in the industry and listed in the USP XXII <1211>, including gas sterilization, ionizing radiation or filtration. Sterilization may be maintained by what is termed aseptic processing, defined also in USP XXII <1211>. Acceptable gases used for gas sterilization include ethylene oxide. Acceptable radiation types used for ionizing radiation methods include gamma, for instance from a cobalt 60 source and electron beam. A typical dose of gamma radiation is 2.5 MRad. When appropriate, filtration may be accomplished using a filter
with suitable pore size, for example 0.22 µm and of a suitable material, for instance Teflon®. The term "USP" refers to U.S. Pharmacopeia (Rockville, Md.).

[0118] Also described herein are methods for treating and/or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising at least one coronavirus S protein immunogen, wherein the S protein immunogen comprises an amino acid sequence that is identical to, or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26, and wherein the S protein immunogen has an epitope that elicits a protective immune response, which is a humoral immune response (including, for example, a mucosal IgA, systemic IgA, IgG, IgM response) and/or a cell-mediated immune response, and pharmaceutically acceptable carrier, diluent, or excipient. The S protein immunogen composition is administered at a dose sufficient to elicit an immune response specific for the administered S protein immunogen or immunogens or variants thereof. In certain embodiments, an infection being prevented or treated may be caused by a group 1 coronavirus, group 2 coronavirus, group 3 coronavirus, SARS group coronavirus, or a combination thereof.

[0119] In other embodiments, a method for treating and/or preventing a coronavirus infection, comprises administering to a subject in need thereof a composition comprising at least one coronavirus N protein immunogen, wherein the N protein immunogen comprises an amino acid sequence that is identical to, or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38, and wherein the N protein immunogen has an epitope that elicits a protective immune response (humoral response (including, for example, a mucosal IgA, systemic IgA, IgG, IgM response) and/or a cell-mediated immune response), and a pharmaceutically acceptable carrier, diluent or excipient. The N protein immunogen composition is administered at a dose sufficient to elicit an immune response specific for the administered N protein immunogens or variants thereof. In certain embodiments, the infection being prevented or treated may be caused by a group 1 coronavirus, group 2 coronavirus, group 3 coronavirus, SARS group coronavirus, or a combination thereof.

[0120] In still other embodiments, a method for treating and/or preventing coronavirus infection, comprises administering to a subject in need thereof a composition comprising a plurality of coronavirus immunogens. The plurality of coronavirus immunogens. The plurality of coronavirus immunogens at least two S protein immunogens wherein each of the at least two S protein immunogens comprises an amino acid sequence that is identical to, or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) and selected from SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26. In another embodiment, the plurality of coronavirus immunogens may comprise at least two N protein

immunogens wherein each of the at least two N protein immunogens comprises an amino acid sequence that is identical to, or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) and selected from SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38. In another embodiment, a method for treating and/or preventing a coronavirus infection comprises a plurality of coronavirus protein immunogens that comprises at least one S protein immunogen as described herein and at least one N protein immunogen as described herein. In other embodiments, a method for treating and/or preventing a coronavirus infection may comprise a plurality of coronavirus protein immunogens that may be selected from an S protein immunogen, an N protein immunogen, a coronavirus M protein immunogen, a coronavirus E protein immunogen, and includes any combination thereof. Preferably, each immunogen of the plurality of immunogens has an epitope capable of eliciting a protective immune response such a humoral response (for example, eliciting a neutralizing antibody) and/or a cell-mediated immune response, and is combined with a pharmaceutically acceptable carrier, diluent or excipient. A SARS coronavirus M protein immunogen may have an amino acid sequences such as provided in GenBank Accession No. AAU07933, which is encoded by the nucleotide sequence set forth in GenBank Accession No. AY702026. The nucleotide sequence encoding an M protein and the amino acid sequence of the encoded protein may be found in numerous entries in publicly available databases that provide the nucleotide sequences and encoded amino acid sequences of the entire SARS coronavirus genome. Additional amino acid sequences of coronavirus S protein and coronavirus N protein and the nucleotide sequences encoding these proteins may similarly be found in the SARS coronavirus genome sequences provided in the publicly available databases. In certain embodiments, the immunogen compositions may be specific for group 1 coronavirus, group 2 coronavirus, group 3 coronavirus, SARS group coronavirus, or a combination thereof.

[0121] A subject or host suitable for treatment with acoronavirus immunogen composition or formulation may be identified by well-established indicators of risk for developing a disease or by well-established hallmarks of an existing disease. For example, indicators of an infection include fever, dry cough, dyspnea (shortness of breath), headache, hypoxaemia (low blood oxygen concentration), lymphopaenia (reduced lymphocyte numbers), mildly elevated aminotransferase levels (indicating liver damage), microorganism positive cultures, inflammation, and the like. Infections that may be treated or prevented with a coronavirus immunogen vaccine as described herein include those caused by or due to coronavirus, whether the infection is primary, secondary, or opportunistic. Examples of coronavirus include any subtype, strain, antigenic variant, and the like, of these viruses, including SARS coronavirus. By way of example, SARS infections are characterized by flu-like symptoms, including high fever, myalgia, dry and nonproductive dyspnea, lymphopenia, and infiltrate on chest radiography. The mortality rate during the SARS epidemic of 2002-2003 was approximately 10%, but as high as 50% in the elderly (Stadler et al., Nat. Rev. 1:209, 2003).

[0122] The pharmaceutical compositions that contain one or more coronavirus immunogens of the invention may be in any form that allows for the composition to be administered

to a subject, such as a human or non-human animal. For example, an S or N protein immunogen, fusion protein, and/or multivalent composition may be prepared and administered as a liquid solution or prepared as a solid form (e.g., lyophilized), which may be administered in solid form, or resuspended in a solution in conjunction with administration. The hybrid polypeptide composition is prepared or formulated to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a subject or patient or to be bioavailable via slow release. Compositions that will be administered to a subject or patient take the form of one or more dosage units; for example, a tablet may be a single dosage unit, and a container of one or more compounds of the invention in aerosol form may hold a plurality of dosage units. In certain preferred embodiments, any of the aforementioned pharmaceutical (therapeutic) compositions comprising a coronavirus immunogen or cocktail of immunogens of the invention are in a container, preferably in a sterile container.

[0123] In one embodiment, the therapeutic (pharmaceutical) composition is administered nasally, wherein a coronavirus immunogen or cocktail composition can be taken up by cells, such as cells located in the nasal-associated lymphoid tissue. Other typical routes of administration include, without limitation, enteral, parenteral, transdermal/transmucosal, nasal, and inhalation. The term "enteral," as used herein, is a route of administration in which the immunogenic composition is absorbed through the gastrointestinal tract or oral mucosa, including oral, rectal, and sublingual. The term "parenteral", as used herein, describes administration routes that bypass the gastrointestinal tract, including intraarterial, intradermal, intramuscular, intranasal, intraocular, intraperitoneal, intravenous, subcutaneous, submucosal and intravaginal injection or infusion techniques. The term "transdermal/transmucosal," as used herein, is a route of administration in which the immunogenic composition is administered through or by way of the skin, including topical. The terms "nasal" and "inhalation" encompass techniques of administration in which an immunogenic composition is introduced into the pulmonary tree, including intrapulmonary or transpulmonary. In one embodiment, the compositions of the present invention are administered nasally.

[0124] In another embodiment, methods are provided for treating and/or preventing a coronavirus infection by administering an antibody that specifically binds to a coronavirus antigen and that facilitates neutralization of the virus (i.e., decreases or eliminates viral infectivity), facilitates inactivation, prevents or inhibits viral assembly, and/or prevents or inhibits viral nucleic acid replication, transcription, or translation. Antibodies that specifically bind to a coronavirus antigen may be generated and prepared by any one of numerous methods described herein and practiced in the art.

[0125] In one embodiment, a plurality (at least two or more) of isolated antibodies that specifically bind to a coronavirus protein are produced by a method, which is a method for preventing a coronavirus infection, that comprises administering to a subject a composition containing at least one coronavirus protein immunogen (such as an S protein immunogen, an N protein immunogen, and/or an M protein immunogen) at a dose sufficient to elicit antibodies specific for the at least one coronavirus protein immunogen wherein the protein immunogen has an epitope that elicits a

protective immune response, which preferably includes a humoral response. A biological sample, such as serum, lymph, nasopharyngeal washings, blood, ascites, pulmonary washings, or other fluid, may be obtained from the host and the antibodies specific for the coronavirus protein isolated according to methods routinely practiced by a skilled artisan such as affinity purification methods. For example, antibodies that are specific for a coronavirus protein may be removed or isolated from other antibodies and components of the biological sample by contacting the biological sample with a source of the coronavirus protein or fragment thereof. In another embodiment, sera may be obtained from a host immunized with at least one coronavirus protein immunogen and enriched for a particular immnunoglobulin class, such as IgA or IgG. Methods for preparation of such immune sera are well known in the art. The immune sera are preferably isolated from the same host species as the species to which the sera are administered. In a certain embodiment, the antibodies may be obtained from a subject who was immunized with at least one of a group 1 coronavirus, or a group 2 coronavirus, or a group 3 coronavirus, or a SARS group coronavirus, or combination thereof such that the antibodies isolated or the sera obtained from the host comprise at least one antibody specific for a group 1 coronavirus, or a group 2 coronavirus, or a group 3 coronavirus, or a SARS group coronavirus. The biological sample may also contain one or more antibodies that specifically bind to an antigen from more than one group of coronaviruses.

[0126] In another embodiment, a method for treating or preventing a coronavirus infection comprises administering to a subject a composition comprising a pharmaceutically acceptable carrier and a plurality of antibodies as described herein. In addition, a subject at risk for acquiring or developing an coronavirus infection can have a plurality of antibodies that specifically bind to a first coronavirus protein immunogen administered before, simultaneous with, or after administration of a composition comprsing at least one coronavirus protein immunogen (for example, a second coronavirus S protein immunogen or a second coronavirus N protein immunogen or a second coronavirus S protein immunogen and a second coronavirus N protein immunogen) that is different from the coronavirus protein immunogen (a first coronavirus S protein immunogen or a first coronavirus N protein immunogen).

[0127] As described herein a coronavirus S protein immunogen, or variant thereof, which may be a first or second immunogen or third S protein immunogen etc., comprises an amino acid sequence that is identical to, or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%), which may be selected from SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26. Also as described herein a coronavirus N protein immunogen, which may be a first or second immunogen or third N protein immunogen etc., comprises an amino acid sequence that is identical to, or at least 80% identical to (which includes at least 85%, 90%, or 95% or any percent in between 80% and 100%) to an amino acid sequence selected from SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, or SEQ ID NO:38.

[0128] In other embodiments, a coronavirus M protein immunogen or a coronavirus E protein immunogen, or combinations thereof, may be administered to elicit an immune response wherein each of the different immunogens, including an S protein immunogen or an N protein immunogen, have at least one epitope that elicits a protective immune response, such as a humoral response or cellmediated immune response. Such compositions may further comprise a pharmaceutically acceptable carrier, diluent or excipient, as described herein. Thus as described herein, antibodies specific for one or more coronavirus immunogens can be provided passively, while the subject is vaccinated to actively elicit antibodies specific for one or more different coronavirus immunogens. In another embodiment, antibodies specific for one or more coronavirus immunogens can be provided passively, while the subject is vaccinated with one or more of the same as well as one or more different coronavirus immunogens to actively elicit antibodies that specifically bind to one or more coronavirus antigens.

[0129] In another embodiment, antibodies are provided that specifically bind to the coronavirus protein immunogens and variants thereof described herein. The coronavirus protein antigens (immunogens), such as an S protein immunogen and an N protein immunogen, or a variant, and fragments of these immunogens, are used to elicit antibodies specific for at least one epitope present on the S or N protein immunogens and variants thereof. In preferred embodiments the antibodies bind to specific protective epitopes present on a coronavirus S or N protein. Antibodies include polyclonal antibodies, monospecific antibodies, monoclonal antibodies, anti-idiotypic antibodies, and antigen-binding fragments thereof such as F(ab')₂, Fab', Fd, Fv, and Fab fragments, and recombinantly or synthetically produced antibodies or antigen-binding fragments. Such antibodies incorporate the variable regions that permit a monoclonal antibody to specifically bind, which means an antibody is able to selectively bind to a coronavirus S or N peptide or polypeptide from group 1, group 2, group 3, or SARS group coronaviruses. "Specific for,""immunospecific," or "specifically binds" refer to the capability of a protein (e.g., an antibody) to specifically (selectively) bind a polypeptide or peptide encoded by a nucleic acid molecule encoding an immunogen from a coronavirus S or N protein from group 1, 2, 3, or SARS coronaviruses, or a synthesized coronavirus S or N protein from group 1, 2, 3, or SARS coronaviruses. In still another embodiment, a rodent monoclonal antibody (prepared according to methods described herein and known in the art) that specifically binds to a coronavirus protein may be humanized or made fully human according to procedures described herein and known in the art.

[0130] "Association" or "binding" of an antibody to a specific antigen generally involves electrostatic interactions, hydrogen bonding, Van der Waals interactions, and hydrophobic interactions. Any one of these or any combination thereof can play a role in the binding between an antibody and its antigen. Such an antibody generally associates with an antigen with an affinity constant (K_a) of at least 10^4 , at least 10^5 , at least 10^6 , at least 10^7 , or at least 10^8 . Affinity constants may be determined by one of ordinary skill in the art using well-known techniques (see Scatchard, *Ann. N.Y. Acad. Sci.* 51:660-672, 1949) and by surface plasmon resonance (SPR; BIAcoreTM, Biosensor, Piscataway, N.J.; see, e.g., Wolff et al., *Cancer Res.* 53:2560-2565 (1993)). In addition, binding properties of an antibody to a coronavirus

protein immunogen may generally be determined and assessed using immunodetection methods including, for example, an enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, immunoblotting, countercurrent immunoelectrophoresis, radioimmunoassays, dot blot assays, inhibition or competition assays, and the like, which may be readily performed by those having ordinary skill in the art (see, e.g., U.S. Pat. Nos. 4,376,110 and 4,486,530; Harlow et al., *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory (1988)).

[0131] The term "antibody," as used herein, includes naturally occurring antibodies as well as non-naturally occurring antibodies, including, for example, single chain antibodies, chimeric, bifunctional, and humanized antibodies, as well as antigen-binding fragments thereof. Such non-naturally occurring antibodies may be constructed using solid phase peptide synthesis, may be produced recombinantly, or may be obtained, for example, by screening combinatorial libraries consisting of variable heavy chains and variable light chains (Huse et al., Science 246:1275-1281 (1989)). These and other methods of making, for example, chimeric, humanized, CDR-grafted, single chain, and bifunctional antibodies are well known in the art (see, e.g., Winter and Harris, Immunol. Today 14:243, 1993; Ward et al., Nature 341:544, 1989; Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1992; Borrabeck, Antibody Engineering, 2d ed., Oxford Univ. Press, 1995; Hilyard et al., Protein Engineering: A practical approach, IRL Press, 1992).

[0132] Polyclonal antibodies can be readily generated by one of ordinary skill in the art from a variety of warmblooded animals, including horses, cows, goats, sheep, dogs, chickens, turkeys, rabbits, mice, hamsters, or rats. Briefly, the desired S protein immunogen or variant thereof or N protein immunogen or variant thereof, or mixtures of coronavirus immunogens or variants thereof, are administered to immunize an animal through parenteral, intraperitoneal, intramuscular, intraocular, or subcutaneous injections, or nasally. The immunogenicity of the polypeptide of interest may be increased through the use of an adjuvant, such as Proteosome, Protollin, alum, Ribi adjuvant, and Freund's complete or incomplete adjuvant. Following several booster immunizations over a period of weeks, small samples of serum are collected and tested for reactivity to the desired immunogen. Once the titer of specific antibodies in the sera of the animal has reached a plateau with regard to reactivity to an S or N protein immunogen or variant thereof, larger quantities of polyclonal immune sera may be readily obtained by periodic, such as weekly bleedings, or by exsanguinating the animal. Polyclonal antibodies may then be purified from such antisera, for example, by affinity chromatography using protein A or protein G immobilized on a suitable solid support (see, e.g., Coligan, supra, p. 2.7.1-2.7.12; 2.9.1-2.9.3; Baines et al., Purification of Immunoglobulin G (IgG), in Methods in Molecular Biology, 10:9-104 (The Humana Press, Inc. (1992)). Alternatively, affinity chromatography may be performed wherein a coronavirus protein antigen (immunogen) to which the antisera specifically bind, or an antibody specific for an Ig constant region of the particular immunized animal species, is immobilized on a suitable solid support.

[0133] Monoclonal antibodies that specifically bind to a coronavirus protein antigen and hybridomas, which are

examples of immortal eukaryotic cell lines, that produce monoclonal antibodies having the desired binding specificity, may also be prepared, for example, using the technique of Kohler and Milstein (Nature, 256:495-497; 1976, Eur. J. Immunol. 6:511-519 (1975)) and improvements thereto (see, e.g., Coligan et al. (eds.), Current Protocols in Immunology, 1:2.5.1-2.6.7 (John Wiley & Sons 1991); U.S. Pat. Nos. 4,902,614, 4,543,439, and 4,411,993; Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, Plenum Press, Kennett et al. (eds.) (1980); and Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press (1988); see also, e.g., Brand et al., Planta Med. 70:986-92 (2004)). An animal-for example, a rat, hamster, or preferably mouse-is immunized with an immunogen prepared as described above. The presence of specific antibody production may be monitored after the initial injection (injections may be administered by any one of several routes as described herein and known in the art for generation of polyclonal antibodies) and/or after a booster injection by obtaining a serum sample and detecting the presence of an antibody that binds to the coronavirus immunogen using any one of several immunodetection methods known in the art and described herein. From animals producing antibodies that bind to the immunogen, lymphoid cells, most commonly cells from the spleen or lymph node, are removed to obtain B-lymphocytes, lymphoid cells that are antibody-forming cells, and then may be immortalized by fusion with a drug-sensitized myeloma (e.g., plasmacytoma) cell fusion partner (e.g., inability to express endogenous Ig gene products, e.g., P3X63-Ag 8.653 (ATCC No. CRL 1580); NS0, SP20). The resulting hybridoma cells may be cultured, isolated, and analyzed according to methods well known in the monoclonal antibody art. The hybridomas are cloned (e.g., by limited dilution cloning or by soft agar plaque isolation) and positive clones that produce an antibody specific to the antigen are selected and cultured. Hybridomas producing monoclonal antibodies with high affinity and specificity for the coronavirus immunogen are preferred.

[0134] Monoclonal antibodies may be isolated from the supernatants of hybridoma cultures. An alternative method for production of a murine monoclonal antibody is to inject the hybridoma cells into the peritoneal cavity of a syngeneic mouse, for example, a mouse that has been treated (e.g., pristane-primed) to promote formation of ascites fluid containing the monoclonal antibody. Contaminants may be removed by conventional techniques, such as chromatography (e.g., size-exclusion, ion-exchange), gel filtration, precipitation, extraction, or the like (see, e.g., Coligan, supra, p. 2.7.1-2.7.12; 2.9.1-2.9.3; Baines et al., Purification of Immunoglobulin G (IgG), in Methods in Molecular Biology, 10:9-104 (The Humana Press, Inc. (1992)). For example, antibodies may be purified by affinity chromatography using an appropriate ligand selected based on particular properties of the monoclonal antibody (e.g., heavy or light chain isotype, binding specificity, etc.). Examples of a suitable ligand, immobilized on a solid support, include Protein A, Protein G, an anti-constant region (light chain or heavy chain) antibody, an anti-idiotype antibody, the specific coronavirus immunogen, or a derivative thereof.

[0135] An anti-coronavirus protein antibody may be a human monoclonal antibody. Human monoclonal antibodies may be generated by any number of techniques with which those having ordinary skill in the art will be familiar. Such

methods include, but are not limited to, Epstein Barr Virus (EBV) transformation of human peripheral blood cells (e.g., containing B lymphocytes), in vitro immunization of human B cells, fusion of spleen cells from immunized transgenic mice carrying inserted human immunoglobulin genes, isolation from human immunoglobulin V region phage libraries, or other procedures as known in the art and based on the disclosure herein. Methods for obtaining human antibodies from transgenic mice are described, for example, by Green et al., Nature Genet. 7:13 (1994); Lonberg et al., Nature 368:856 (1994); Taylor et al., Int. Immun. 6:579 (1994); U.S. Pat. No. 5,877,397; Bruggemann et al., Curr. Opin. Biotechnol. 8:455-58 (1997); Jakobovits et al., Ann. N.Y. Acad. Sci. 764:525-35 (1995). Human monoclonal antibodies may be obtained by immunizing the transgenic mice, which may then produce human antibodies specific for the antigen. Lymphoid cells of the immunized transgenic mice can be used to produce human antibody-secreting hybridomas according to the methods described herein. Polyclonal sera containing human antibodies may also be obtained from the blood of the immunized animals.

[0136] Another method for generating human coronavirus protein specific monoclonal antibodies includes immortalizing human peripheral blood cells by EBV transformation. See, e.g., U.S. Pat. No. 4,464,456. The stability of the lymphoblastoid cell line producing an anti-coronavirus protein antibody may be improved by fusing the transformed cell line with a murine myeloma to produce a mouse-human hybrid cell line according to methods known in the art (see, e.g., Glasky et al., *Hybridoma* 8:377-89 (1989)). In certain embodiments, a B cell that is producing an anti-coronavirus protein antibody is selected, and the light chain and heavy chain variable regions are cloned from the B cell according to molecular biology techniques known in the art (WO 92/02551; U.S. Pat. No. 5,627,052; Babcook et al., *Proc. Natl. Acad. Sci. USA* 93:7843-48 (1996)).

[0137] Chimeric antibodies, specific for a coronavirus protein, including humanized antibodies, may also be prepared. A chimeric antibody has at least one constant region domain derived from a first mammalian species and at least one variable region domain derived from a second, distinct mammalian species. See, e.g., Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-55 (1984). In one embodiment, a chimeric antibody may be constructed by cloning the polynucleotide sequence that encodes at least one variable region domain derived from a non-human monoclonal antibody, such as the variable region derived from a murine, rat, or hamster monoclonal antibody, into a vector containing a nucleic acid sequence that encodes at least one human constant region (see, e.g., Shin et al., Methods Enzymol. 178:459-76 (1989); Walls et al., Nucleic Acids Res. 21:2921-29 (1993)).

[0138] A non-human/human chimeric antibody may be further genetically engineered to create a "humanized" antibody. Such a humanized antibody may comprise a plurality of CDRs derived from an immunoglobulin of a non-human mammalian species, at least one human variable framework region, and at least one human immunoglobulin constant region. Humanization may in certain embodiments provide an antibody that has decreased binding affinity for the specific coronavirus protein when compared, for example, with either a non-human monoclonal antibody from which a coronavirus protein binding variable region is obtained, or a

chimeric antibody having such a V region and at least one human C region, as described above. Useful strategies for designing humanized antibodies may therefore include, for example by way of illustration and not limitation, identification of human variable framework regions that are most homologous to the non-human framework regions of the chimeric antibody. Without wishing to be bound by theory, such a strategy may increase the likelihood that the humanized antibody will retain specific binding affinity for the coronavirus protein, which in some preferred embodiments may be substantially the same affinity for the coronavirus protein, and in certain other embodiments may be a greater affinity for the coronavirus protein (see, e.g., Jones et al., *Nature* 321:522-25 (1986); Riechmann et al., *Nature* 332:323-27 (1988)).

[0139] Designing such a humanized antibody may therefore include determining CDR loop conformations and structural determinants of the non-human variable regions, for example, by computer modeling, and then comparing the CDR loops and determinants to known human CDR loop structures and determinants (see, e.g., Padlan et al., FASEB 9:133-39 (1995); Chothia et al., Nature, 342:377-383 (1989)). Computer modeling may also be used to compare human structural templates selected by sequence homology with the non-human variable regions (see, e.g., Bajorath et al., Ther. Immunol. 2:95-103 (1995); EP-0578515-A3). If humanization of the non-human CDRs results in a decrease in binding affinity, computer modeling may aid in identifying specific amino acid residues that could be changed by site-directed or other mutagenesis techniques to partially, completely or supra-optimally (i.e., increase to a level greater than that of the non-humanized antibody) restore affinity. Those having ordinary skill in the art are familiar with these techniques and will readily appreciate numerous variations and modifications to such design strategies.

[0140] Another method for preparing a humanized antibody is called veneering. Veneering framework (FR) residues refers to the selective replacement of FR residues from, e.g., a rodent heavy or light chain V region, with human FR residues in order to provide a xenogeneic molecule comprising an antigen-binding site that retains substantially all of the native FR polypeptide folding structure. Veneering techniques are based on the understanding that the ligand binding characteristics of an antigen-binding site are determined primarily by the structure and relative disposition of the heavy and light chain CDR sets within the antigenbinding surface (see, e.g., Davies et al., Ann. Rev. Biochem. 59:439-73, (1990)). Thus, antigen binding specificity can be preserved in a humanized antibody when the CDR structures, their interaction with each other, and their interaction with the rest of the V region domains are carefully maintained. By using veneering techniques, exterior (e.g., solvent-accessible) FR residues that are readily encountered by the immune system are selectively replaced with human residues to provide a hybrid molecule that comprises either a weakly immunogenic, or substantially non-immunogenic veneered surface. The process of veneering makes use of the available sequence data for human antibody variable domains compiled by Kabat et al., in Sequences of Proteins of Immunological Interest, 4th ed., (U.S. Dept. of Health and Human Services, U.S. Government Printing Office, 1987), updates to the Kabat database, and other accessible U.S. and foreign databases (both nucleic acid and protein).

[0141] For particular uses, antigen-binding fragments of antibodies that specifically bind to coronavirus proteins may be desired. Antibody fragments, F(ab')2, Fab, Fab', Fv, and Fd, can be obtained, for example, by proteolytic hydrolysis of the antibody, such as by pepsin or papain digestion of whole antibodies according to conventional methods. As an illustration, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a fragment denoted F(ab')₂. This fragment can be further cleaved using a thiol reducing agent to produce an Fab' monovalent fragment. Optionally, the cleavage reaction can be performed using a blocking group for the sulfhydryl groups that result from cleavage of disulfide linkages. As an alternative, an enzymatic cleavage of an antibody using papain produces two monovalent Fab fragments and an Fc fragment (see, e.g., U.S. Pat. No. 4,331,647; Nisonoffet al., Arch. Biochem. Biophys. 89:230, 1960; Porter, Biochem. J. 73:119, 1959; Edelman et al., in Methods in Enzymology 1:422 (Academic Press 1967); Weir, Handbook of Experimental Immunology, Blackwell Scientific, Boston (1986)).

[0142] An antibody fragment may also be any synthetic or genetically engineered protein that acts like an antibody in that it binds to a specific antigen to form a complex. For example, antibody fragments include isolated fragments consisting of the light chain variable region, Fv fragments consisting of the variable regions of the heavy and light chains, recombinant single chain polypeptide molecules in which light and heavy variable regions are connected by a peptide linker (scFv proteins), and minimal recognition units consisting of the amino acid residues that mimic the hypervariable region. The antibodies described herein preferably comprise at least one variable region domain.

[0143] A minimal recognition unit is an antibody fragment comprising for a single complementarity-determining region (CDR). Such CDR peptides can be obtained by constructing polynucleotides that encode the CDR of an antibody of interest. The polynucleotides are prepared, for example, by using the polymerase chain reaction to synthesize the variable region using mRNA of antibody-producing cells as a template according to methods practiced by persons skilled in the art (see, for example, Larrick et al., Methods: A Companion to Methods in Enzymology 2:106, (1991); Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies," in Monoclonal Antibodies: Production, Engineering and Clinical Application, Ritter et al. (eds.), page 166 (Cambridge University Press 1995); and Ward et al., "Genetic Manipulation and Expression of Antibodies," in Monoclonal Antibodies: Principles and Applications, Birch et al., (eds.), page 137 (Wiley-Liss, Inc. 1995)). Alternatively, such CDR peptides and other antibody fragment can be synthesized using an automated peptide synthesizer.

[0144] According to certain embodiments, non-human, human, or humanized heavy chain and light chain variable regions of any of the immunoglobulin molecules described herein may be constructed as scFv polypeptide fragments (single chain antibodies). See, e.g., Bird et al., *Science* 242:423-426 (1988); Huston et al., *Proc. Natl. Acad. Sci. USA* 85:5879-5883 (1988)). Multi-functional scFv fusion proteins may be generated by linking a polynucleotide sequence encoding an scFv polypeptide in-frame with at least one polynucleotide sequence encoding any of a variety of known effector proteins. These methods are known in the art, and are disclosed, for example, in EP-B1-0318554, U.S.

Pat. No. 5,132,405, U.S. Pat. No. 5,091,513, and U.S. Pat. No. 5,476,786. By way of example, effector proteins may include immunoglobulin constant region sequences. See, e.g., Hollenbaugh et al., 1995 *J. Immunol. Methods* 188:1-7. Other examples of effector proteins are enzymes. As a non-limiting example, such an enzyme may provide a biological activity for therapeutic purposes (see, e.g., Siemers et al., *Bioconjug. Chem.* 8:510-19 (1997)), or may provide a detectable activity, such as horseradish peroxidase-catalyzed conversion of any of a number of well-known substrates into a detectable product, for diagnostic uses.

[0145] Antibodies may also be identified and isolated from human immunoglobulin phage libraries, from rabbit immunoglobulin phage libraries, and/or from chicken immunoglobulin phage libraries (see, e.g., Winter et al., 1994 Annu. Rev. Immunol. 12:433-55; Burton et al., Adv. Immunol. 57:191-280 (1994); U.S. Pat. No. 5,223,409; Huse et al., Science 246:1275-81 (1989); Schlebusch et al., Hybridoma 16:47-52 (1997) and references cited therein; Rader et al;, J. Biol. Chem. 275:13668-76 (2000); Popkov et al., J. Mol. Biol. 325:325-35 (2003); Andris-Widhopf et al., J. Immunol. Methods 242:159-31 (2000)). Antibodies isolated from nonhuman species or non-human immunoglobulin libraries may be genetically engineered according to methods described herein and known in the art to "humanize" the antibody or fragment thereof. Immunoglobulin variable region gene combinatorial libraries may be created in phage vectors that can be screened to select Ig fragments (Fab, Fv, scFv, or multimers thereof) that bind specifically to a coronavirus protein (see, e.g., U.S. Pat. No. 5,223,409; Huse et al., Science 246:1275-81 (1989); Sastry et al., Proc. Natl. Acad. Sci. USA 86:5728-32 (1989); Alting-Mees et al., Strategies in Molecular Biology 3:1-9 (1990); Kang et al., Proc. Natl. Acad. Sci. USA 88:4363-66 (1991); Hoogenboom et al., J. Molec. Biol. 227:381-388 (1992); Schlebusch et al., Hybridoma 16:47-52 (1997) and references cited therein; U.S. Pat. No. 6,703,015).

[0146] According to certain embodiments, immunoglobulin Fab fragments may also be displayed on a phage particle (see, e.g., U.S. Pat. No. 5,698,426). Heavy and light chain immunoglobulin cDNA expression libraries may also be prepared in lambda phage, for example, using λ ImmunoZapTM(H) and λ ImmunoZapTM(L) vectors (Stratagene, La Jolla, Calif.). (see Huse et al., supra; see also Sastry et al., supra). Phage display techniques may also be used to select Ig fragments or single chain antibodies that bind to a coronavirus protein. For examples of suitable vectors having multicloning sites into which candidate nucleic acid molecules (e.g., DNA) encoding such antibody fragments or related peptides may be inserted, see, e.g., McLafferty et al., Gene 128:29-36, (1993); Scott et al., Science 249:386-390 (1990); Smith et al., Meth. Enzvmol. 217:228-257 (1993); Fisch et al., Proc. Natl. Acad. Sci. USA 93:7761-66 (1996)).

[0147] In certain other embodiments, coronavirus proteinspecific antibodies are multimeric antibody fragments. Useful methodologies are described generally, for example in Hayden et al., *Curr Opin. Immunol.* 9:201-12 (1997); Coloma et al., *Nat. Biotechnol.* 15:159-63 (1997). For example, multimeric antibody fragments may be created by phage techniques to form miniantibodies (U.S. Pat. No. 5,910,573) or diabodies (Holliger et al., *Cancer Immunol. Immunother.* 45:128-130 (1997)). Multimeric fragments may be generated that are multimers of a coronavirus protein-specific Fv, or that are bispecific antibodies comprising a coronavirus protein-specific Fv noncovalently associated with a second Fv having a different antigen specificity (see, e.g., Koelemij et al., *J. Immunother.* 22:514-24 (1999)).

[0148] Introducing amino acid mutations into coronavirus protein-binding immunoglobulin molecules may be useful to increase the specificity or affinity for a coronavirus protein, or to alter an effector function. Immunoglobulins with higher affinity for the coronavirus protein may be generated by site-directed mutagenesis of particular residues. Computer assisted three-dimensional molecular modeling may be employed to identify the amino acid residues to be changed in order to improve affinity for the coronavirus protein (see, e.g., Mountain et al., Biotechnol. Genet. Eng. Rev. 10:1-142 (1992)). Alternatively, combinatorial libraries of CDRs may be generated in M13 phage and screened for immunoglobulin fragments with improved affinity (see, e.g., Glaser et al., J. Immunol. 149:3903-3913 (1992); Barbas et al., Proc. Natl. Acad. Sci. USA 91:3809-13 (1994); U.S. Pat. No. 5,792,456).

[0149] In certain embodiments, the antibody may be genetically engineered to have an altered effector function. For example, the antibody may have an altered capability to mediate complement dependent cytotoxicity (CDC) or antibody dependent cellular cytotoxicity (ADCC). Effector functions may be altered by site-directed mutagenesis (see, e.g., Duncan et al., Nature 332:563-64 (1988); Morgan et al., Immunology 86:319-24 (1995); Eghtedarzedeh-Kondri et al., Biotechniques 23:830-34 (1997)). For example, mutation of the glycosylation site on the Fc portion of the immunoglobulin may alter the capability of the immunoglobulin to fix complement (see, e.g., Wright et al., Trends Biotechnol. 15:26-32 (1997)). Other mutations in the constant region domains may alter the ability of the immunoglobulin to fix complement, or to effect ADCC (see, e.g., Duncan et al., Nature 332:563-64(1988); Morgan et al., Immunology 86:319-24 (1995); Sensel et al., Mol. Immunol. 34:1019-29 (1997)). Alternatively, single chain polypeptides may be constructed recombinantly that comprise an A2E binding fragment, an immunoglobulin hinge region polypeptide, an immunoglobulin CH2 region polypeptide, and an immunoglobulin CH3 region polypeptide (see, e.g., U.S. Patent Publication Nos. 2003/0118592; 2003/ 0133939).

[0150] The nucleic acid molecules encoding an antibody or fragment thereof that specifically binds a coronavirus protein, as described herein, may be propagated and expressed according to any of a variety of well-known procedures for nucleic acid excision, ligation, transformation, and transfection. Thus, in certain embodiments expression of an antibody fragment may be preferred in a prokaryotic host cell, such as Escherichia coli (see, e.g., Pluckthun et al., Methods Enzymol. 178:497-515 (1989)). In certain other embodiments, expression of the antibody or an antigen-binding fragment thereof may be preferred in a eukaryotic host cell, including yeast (e.g., Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Pichia pastoris); animal cells (including mammalian cells); or plant cells. Examples of suitable animal cells include, but are not limited to, myeloma, COS, CHO, or hybridoma cells.

[0151] In certain embodiments, anti-idiotype antibodies that recognize an antibody (or antigen-binding fragment thereof) that specifically binds to a coronavirus protein are provided and methods for using these anti-idiotype antibodies. Anti-idiotype antibodies may be generated as polyclonal antibodies or as monoclonal antibodies by the methods described herein, using an anti-coronavirus protein antibody (or antigen-binding fragment thereof) as immunogen. Antiidiotype antibodies or fragments thereof may also be generated by any of the recombinant genetic engineering methods described above or by phage display selection. An anti-idiotype antibody may react with the antigen-binding site of the anti-coronavirus protein antibody such that binding of the antibody to the coronavirus protein is competitively inhibited. Alternatively, an anti-idiotype antibody as provided herein may not competitively inhibit binding of an anti-coronavirus protein antibody to the coronavirus protein. Anti-idiotype antibodies are useful for immunoassays to determine the presence of anti-coronavirus protein antibodies in a biological sample. For example, an immunoassay such as an ELISA, which are practiced by persons skilled in the art, may be used to determine the presence of an immune response induced by administering (i.e., immunizing) a host with a coronavirus protein as described herein.

[0152] All U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, and non-patent publications referred to in this application, and/or listed in the Application Data Sheet are incorporated herein by reference, in their entireties.

[0153] The following examples are offered by way of illustration, and not by way of limitation.

EXAMPLES

Example 1

Preparation of Proteosomes

[0154] Immunogens of the instant invention may be combined, admixed, or formulated with proteosomes by way of non-covalent interactions to form a vaccine composition capable of eliciting a protective immune response in an immunized human or animal subject. Proteosomes of the instant application are mucosal adjuvant delivery vehicles comprising outer membrane proteins purified from, for example, Group B type 2 Neisseria meningitidis. The use of proteosomes for the composition (or formulation) of vaccines has been reviewed by Lowell, G. H., in "New Generation Vaccines 2nd ed., Marcel Dekker, Inc., New York, Basil, Hong Kong (1997) pages 193-206. Proteosomes of the instant invention may be prepared by extraction of phenol-killed bacterial paste with a solution of 6% Empigen® BB (EBB) (Albright and Wilson, Whithaven, UK) in 1 M calcium chloride followed by precipitation with ethanol, solubilization in 1% EBB-Tris/EDTA-saline and then precipitation with ammonium sulfate. The precipitates are re-solubilized in the 1% EBB buffer, dialyzed, and stored in 0.1% EBB at -70° C. Alternative processes may be used in the preparation of proteosomes, for example, proteosomes may be prepared by omitting the ammonium sulfate precipitation step to shorten the process. Preparation of proteosomes is disclosed in U.S. Patent Application Publication No. 2001/0053368 and in U.S. Pat. No. 6,476,201 B1.

Example 2

Preparation Proteosome: Liposaccharide Immunogenic Composition

[0155] A Proteosome adjuvant composition was manufactured by admixing Proteosomes and LPS to allow a presumably non-covalent association. The LPS can be derived from any of a number of gram negative bacteria, such as Shigella, Plesiomonas, Escherichia, or Salmonella species, which is mixed with the Proteosomes prepared as described in Example 1. Briefly, Proteosomes and LPS were thawed overnight at 4° C. and adjusted to 1% Empigen® BB in TEEN buffer. The two components were mixed for 15 minutes at room temperature, at quantities resulting in a final wt/wt ratio of between about 10:1 and about 1:3 of Proteosome:LPS. The Proteosome:LPS mixture was diafiltered on an appropriately sized (e.g., Size 9) 10,000 MWCO hollow fiber cartridge into TNS buffer (0.05 M Tris, 150 mM NaCl pH 8.0). The diafiltration was stopped when Empigen® content in the permeate was <50 ppm (by Empigen® Turbidity Assay or by a Bradford Reagent Assay). The bulk adjuvant (referred to herein as OMP-LPS) was concentrated and adjusted to 5 mg/mL protein (by Lowry assay). Finally, the adjuvant was sterile-filtered using a 0.22 µm Millipak 20 filter unit. The bulk adjuvant was aliquoted into sterile storage containers and frozen.

[0156] The OMP-LPS adjuvant was tested for (1) Empigen® (400 ppm) using reverse-phase HPLC; (2) protein content by a Lowry assay; and (3) LPS content by measurement of 2-keto-3-deoxyoctonate (KDO) assay. The OMP-LPS composition was further characterized for particle size distribution as determined by quantitative number weighted analysis using a particle sizer (Brookhaven Instruments model 90 plus or similar machine) (10-100 nm). However, the particle size for the complex may increase or modulate with varying (e.g., higher) Proteosome to LPS ratio. These resultant Proteosome:LPS complexes have been termed Protollin. Current stability data indicate this formulation is stable for over 2 years.

[0157] Other versions of Protollin containing modifications of the source of LPS may also be produced as needed. While the nasal adjuvant properties of Protollin were evaluated using Protollin prepared with S. flexneri 2a LPS, Protollin prepared with E. coli LPS has been prepared and found to have similar activity. Advantages to using a Protollin made with E. coli LPS include potentially higher yield of LPS as well as fermentation of bacteria that do not require the containment precautions associated with growing a pathogenic organism, such as S. flexneri. The use of LPS from different sources may also affect induction of protective immunity (adaptive or innate). Accordingly, Protollin was assembled using LPS from two different E. coli in order to compare the level of activity to S. flexneri-based Protollin. These data indicated that E. coli LPS can successfully replace the S. flexneri LPS in Protollin while retaining adjuvant activity. This E. coli Protollin can be compared to the LPS from other well-characterized strains of E. coli, including a strain with LPS that has an O-polysaccharide of sufficient length to solubilize the Proteosome OMP particles during the preparation of Protollin.

[0158] Still other versions of Protollin containing modifications of the Proteosome:LPS ratio may also be produced

as needed. Initial studies with Protollin were performed with Protollin containing Proteosome OMPs and LPS at a 1:1 weight:weight ratio. However, before advancing efficacy trials in animals or clinical trials in humans with coronavirus antigens it is important to demonstrate the range of OMP:LPS ratios that are active, and investigate the ratio(s) that have optimal adjuvant activity and also retain solubility of the OMP:LPS complexes that constitute Protollin. Accordingly, the same diafiltration technology used previously was used to produce Protollin with several OMP:LPS ratios including ratios of 4:1, 2:1, and 1:1. Ratios ranging from about 4:1 to about 5:1 were included using Protollin composed of both OMP and LPS from Neisseria meningitidis. (Note: N. meningiditis LPS is frequently called LOS denoting lipooligosaccharide to emphasize the fact that the O-side chain of N. meningiditis liposaccharide is shorter than that of other Gram-negative-bacteria such as E. coli and Shigella). Production of Protollin with N. meningiditis LPS (protollin-Nm) is different from all other versions of Protollin. During the production of Proteosome OMPs, N. meningiditis LPS can be removed by ammonium sulfate precipitation techniques so that Proteosome particles have less than 2.5% N. meningiditis LPS. If the LPS is not removed at this step, the resultant Proteosome particles would have 20-25% LPS compared to the amount of Proteosome OMP present, which would be an OMP:LPS ratio ranging from about 5:1 to about 4:1. Thus, Protollin-Nm can be produced in a single step, thereby eliminating further purification of the Proteosome particles as well as the necessity of separately purifying LPS from another organism and then complexing the LPS to Proteosome OMPs. An aliquot of each Protollin was retained for use in, for example, a spin-down assay to verify Proteosome OMP complexing with LPS. Each of these versions of Protollin is tested in mice for adjuvant activity after combining (mixing, admixing, or formulating) with S protein immunogens to make the different versions of Protollin S protein immunogenic compositions (see, e.g., Example 4).

Example 3

Preparation and Characterization Recombinant S Protein

[0159] In this example, one method for the preparation of native (wild type) Spike protein or fragment thereof is described. Other methods, including synthetic and bacterial expression systems for non-glycosylated S or N protein fragments, are also contemplated. A baculovirus expression system of S. fruiperda Sf9 insect cells (ExpressSF+™) was used. The sequence for the nucleic acid sequence encoding S protein was obtained from Genbank Accession #AY274119 (which represents the entire SARS genome sequence; nucleotides 21493-25259 encode S protein, see FIG. 4). RNA was isolated from a SARS lysate obtained from CDC according to the TRIZOL instruction provided by CDC. This RNA preparation was used to produce cDNA using a TITAN kit (Roche) following the manufacturers instructions. The front end of the S protein encoding nucleic acid sequence was cloned directly into the Baculovirus transfer vector PSC12 using primers 2166 and 2167 (Front: nt 40-750). The middle part (nt 750-2490) and back part (nt 2486-3768) of the S protein encoding nucleic acid sequences were cloned directly into an E. coli pUC 18 vector. Various bacterial clones having correct insets were identified and used to clone the full length S protein encoding nucleic acid sequence into Baculovirus transfer vector PSC12.

[0160] Site-directed mutagenesis was used to create both the $S_{\rm TM}$ full-length construct and the variant $S_{\rm TM\text{-}del}$ version (S protein variant lacking the transmembrane domain, see FIG. 1) of the S protein in PSC12. The truncated S_{TM-del} protein is secreted into the media, and then was purified on lentin lectin (LL) and ion-exchange columns resulting in a protein of approximately 75% homogeneity purity. Other purification schemes are also contemplated, such as nickel column purification of histidine epitope tagged S or N proteins fragments or fusion proteins thereof. For example, the full length S_{TM} protein was fused in frame with a His-tag to produce a His-tag fusion protein. Purification of Histagged proteins was performed by solubilization of a cell pellet with 1% Tergitol, followed by application to and elution from nickel and LL columns. The resulting S_{TM} protein was 95% pure. Both S proteins were bound in Western blot assays by convalescent sera from SARS patients, which shows that recombinantly prepared S protein and variants thereof have native antigenic epitopes specifically bound by S protein antibody.

Example 4

Protollin-SARS CoV S-Protein Formulations

[0161] Protollin with SARS-CoV S protein or an S protein variant (lacking the transmembrane domain, i.e., S_{TM-del}) were prepared. Mice (10 per group) were immunized intranasally on days 0 and 14, with 16 µg, 4 µg, or 1 µg of purified recombinant S_{TM-del} protein with or without Protollin (1 µg). S_{TM-del} protein (16 µg) was also injected intramuscularly adsorbed onto Alhydrogel® (0.5% w/w) and served as a positive control and for generating serum for establishing ELISA conditions. On day 21, mice were euthanized by asphyxiation with CO₂ and cardiac puncture, and serum and lung lavage fluids harvested and assayed by ELISA for S_{TM-del} specific IgG and IgA levels, respectively. Results are expressed as geometric mean concentrations of antibody.

[0162] FIG. 2 shows that mice immunized intranasally with Protollin-adjuvanted S_{TM-del} induced up to 48-fold higher levels of antigen-specific serum IgG compared with S_{TM-del} alone given by the same route. The intramuscularly administered, alum adjuvanted S_{TM-del} positive control preparation induced 4-fold higher serum IgG titers compared with those elicited by the intranasal Protollin S_{TM-del} composition (**FIG. 3A**). However, only the nasal Protollin S_{TM-del} **3B**.

[0163] The data demonstrate that Protollin:S protein variant compositions were capable of inducing antigen-specific serum antibodies that were functionally active (see Example 5) together with a mucosal IgA response. Despite mounting a strong serum IgG and virus neutralizing response, S_{TM-del} protein adjuvanted with alum failed to induce mucosal IgA.

Example 5

SARS-CoV Neutralization Assay

[0164] This example describes neutralization of infectivity of SARS-CoV by sera from mice immunized with S_{TM-del} protein. In these experiments, aliquots of pre-titered SARS-

CoV were mixed with serially diluted samples of individual mouse sera immunized as described in Example 4. Two-fold serial dilutions of mouse sera were prepared beginning with a 1:10 dilution to a final dilution of 1:640; sera were diluted in Minimal Essential Medium (MEM) supplemented with antibiotics, fungizone, amino acids, vitamins, HEPES buffer, and 3% fetal calf serum. To each dilution of sera, SARS-CoV stock virus (100 plaque forming units (pfu) per 50 µl) was diluted to final dilutions of 1:2-1:256. The sera+virus mixtures were gently mixed and then incubated at 37° C. for 2 hours. One hundred microliters of each mixture was transferred to a tissue culture plate (96-well microtiter plate (Corning-Costar)) in which Vero-E6 cells were cultured just to confluency. The cells were incubated with the sera+virus mixtures for 3 days at 37° C. The presence of cytopathic effect (CPE) was determined for each well by microscopy. The neutralizing titer of serum is designated as the serum dilution just lower than the dilution in which CPE was observed.

[0165] The serum antibodies induced by the Protollin:S_{TM-del} admixture were functionally active in that they showed neutralization titers of 20, which was four-fold higher than from mice that received the S_{TM-del} antigen alone or PBS. Similarly, serum antibodies induced by the alum-adjuvanted S-protein positive control were able to inhibit replication of virus in vitro resulting in titers of 160.

Example 6

Immunogenicity of SARS S-Protein and S_{TM-DEL}

[0166] In these experiments, the effect of different doses of ProtollinTM on the immunogenicity of a constant dose of full length or S_{TM-del} (ΔTM (transmembrane deleted)) SARS S-protein preparations in anesthetized or non-anesthetized mice. Ten Balb/C mice were included in each group.

[0167] On days 0 and 14, groups of anesthetized or non-anesthetized mice were immunized intranasally with 10 μ L containing 10 μ g doses of full-length SARS S-protein or S_{TM-del}-protein admixed with 10 μ g, 3 μ g or 1 μ g doses of ProtollinTM. Additional groups of mice received 25 μ L (25 μ g of SARS full-length S-protein or 25 μ g of SARS S_{TM-del}-protein) adsorbed onto Alhydrogel®(alum), which was administered by intramuscular injection. Control mice received only PBS intranasally. On day 21, mice were euthanized by CO₂ asphyxiation and cardiac puncture. Serum, lung lavage, and nasal wash fluid were harvested. The data are presented in **FIG. 6** (serum IgG titer (μ g/mI)) and **FIG. 7** (lung IgA titer (ng/mI)).

[0168] Levels of SARS-specific IgG and IgA antibodies, in individual mice sera and mucosal fluids respectively, were determined by ELISA using plates coated with the appropriate SARS S-protein preparation. Specific IgG and IgA titers were expressed as geometric mean concentrations (ng/ml), the significance of which was assessed by ANOVA analysis (Tukey-Kramer pair-wise comparisons).

[0169] Specific serum IgG titers were approximately 2.5 to 5 fold lower in non-anesthetized compared with anesthetized mice. Similarly, mucosal responses were lower in

non-anesthetized mice compared with anesthetized mice. Specific IgA was just detectable in non-anesthetized animals, and significant numbers of mice in each non-anesthetized group were non-responders.

[0170] At the same dose of ProtollinTM, serum IgG titers elicited by mice immunized with ProtollinTM-formulated full length S-protein were approx 1.5-2.5 higher than those elicited by Δ TM-deleted SARS S-protein. The differences were generally not statistically significant except for the ΔTM-deleted SARS S-protein formulated with 1 μg ProtollinTM, which elicited titers significantly lower than the other vaccines tested (P \leq 0.001-0.01), and the Δ TM-deleted SARS S-protein admixed with 3 µg of Protollin[™], which elicited a serum IgG titer significantly lower than that elicited by the full length S-protein admixed with 10 µg of ProtollinTM ($P \leq 0.05$). No significant differences were observed between the serum IgG titers elicited by any dose of full length plus ProtollinTM admixture (formulation) (or 10 µg ΔTM deleted protein admixed with 10 µg of ProtollinTM) and either protein adsorbed onto Alhydrogel® and injected intramuscularly.

[0171] Specific IgA titers in lung lavage and nasal washes were also determined. Titers significantly above background were observed in all groups of mice given intranasal vaccines but not in any mouse injected with Alhydrogel-adsorbed protein. Dose responses were observed in the groups given intranasal vaccines but none of the differences between the elicited titers was statistically significant.

[0172] Neutralization assays were performed as described in Example 5 with sera from mice in this study. The neutralization titers had a highly significant correlation with the IgG titers measured ($P \le 0.0001$).

[0173] The phenotype of the cellular immune response of the mice in this study was also determined. An assay to determine the phenotype, that is, the cytokine profile, of the response following re-stimulation with full-length S protein was performed with mouse splenocytes. Spleens from mice immunized with full-length S protein (10 µg/ml) and Protollin (10 µg/ml) were pooled and spleens from mice immunized with full-length S protein and alum were pooled, and then both pools were processed into single cell suspensions according to standard methods. The splenic cell suspensions were then incubated with full-length S protein (either 1.7 µg/ml or 5 µg/ml depending upon which cytokine was measured). Cytokines (IFN-y, IL-2, IL-4, IL-5, and IL-6) released into culture supernatants were determined by quantitative ELISA using OptEIA kits (BD Biosciences, San Jose, Calif.). As shown in FIG. 8, the use of Protollin as an adjuvant skews the immune response toward a type 1 phenotype (including a cellular response) rather than a type 2 phenotype observed in animals immunized with alum.

[0174] From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 55 <210> SEQ ID NO 1 <211> LENGTH: 3768 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus strain Tor2 <400> SEOUENCE: 1 atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga ccggtgcacc 60 acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat gaggggggtt 120 tactatcctg atgaaatttt tagatcagac actctttatt taactcagga tttatttctt 180 ccattttatt ctaatgttac agggtttcat actattaatc atacgtttgg caaccctgtc 240 atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt tgtccgtggt 300 tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat taacaattct 360 actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaacccttt ctttgctgtt 420 tctaaaccca tgggtacaca gacacatact atgatattcg ataatgcatt taattgcact 480 ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg taattttaaa 540 cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta taagggctat 600 caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa acctatttt 660 aagttqcctc ttqqtattaa cattacaaat tttaqaqcca ttcttacaqc cttttcacct 720 gctcaagaca tttggggcac gtcagctgca gcctattttg ttggctattt aaagccaact 780 acatttatgc tcaagtatga tgaaaatggt acaatcacag atgctgttga ttgttctcaa 840 aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa aggaatttac 900 960 cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc taatattaca aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt ctatgcatgg 1020 gagagaaaaa aaatttctaa ttgtgttgct gattactctg tgctctacaa ctcaacattt 1080 ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct ttgcttctcc 1140 aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat agcgccagga 1200 caaactggtg ttattgctga ttataattat aaattgccag atgatttcat gggttgtgtc 1260 cttgcttgga atactaggaa cattgatgct acttcaactg gtaattataa ttataaatat 1320 aggtatetta gacatggcaa gettaggeee tttgagagag acatatetaa tgtgeettte 1380 tcccctgatg gcaaaccttg caccccacct gctcttaatt gttattggcc attaaatgat 1440 tatggttttt acaccactac tggcattggc taccaacctt acagagttgt agtactttct 1500 tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac tgaccttatt 1560 aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt gttaactcct 1620 tcttcaaaga gatttcaacc atttcaacaa tttggccgtg atgtttctga tttcactgat 1680 tccgttcgag atcctaaaac atctgaaata ttagacattt caccttgcgc ttttgggggt 1740 gtaagtgtaa ttacacctgg aacaaatgct tcatctgaag ttgctgttct atatcaagat 1800 gttaactgca ctgatgtttc tacagcaatt catgcagatc aactcacacc agcttggcgc 1860 atatattcta ctggaaacaa tgtattccag actcaagcag gctgtcttat aggagctgag 1920

32

-continued	
catgtcgaca cttcttatga gtgcgacatt cctattggag ctggcatttg tgctagttac	1980
catacagttt ctttattacg tagtactagc caaaaatcta ttgtggctta tactatgtct	2040
ttaggtgctg atagttcaat tgcttactct aataacacca ttgctatacc tactaacttt	2100
tcaattagca ttactacaga agtaatgcct gtttctatgg ctaaaacctc cgtagattgt	2160
aatatgtaca tetgeggaga ttetaetgaa tgtgetaatt tgetteteea atatggtage	2220
ttttgcacac aactaaatcg tgcactctca ggtattgctg ctgaacagga tcgcaacaca	2280
cgtgaagtgt tcgctcaagt caaacaaatg tacaaaaccc caactttgaa atattttggt	2340
ggttttaatt tttcacaaat attacctgac cctctaaagc caactaagag gtcttttatt	2400
gaggacttgc tctttaataa ggtgacactc gctgatgctg gcttcatgaa gcaatatggc	2460
gaatgcctag gtgatattaa tgctagagat ctcatttgtg cgcagaagtt caatggactt	2520
acagtgttgc cacctctgct cactgatgat atgattgctg cctacactgc tgctctagtt	2580
agtggtactg ccactgctgg atggacattt ggtgctggcg ctgctcttca aatacctttt	2640
gctatgcaaa tggcatatag gttcaatggc attggagtta cccaaaatgt tctctatgag	2700
aaccaaaaac aaatcgccaa ccaatttaac aaggcgatta gtcaaattca agaatcactt	2760
acaacaacat caactgcatt gggcaagctg caagacgttg ttaaccagaa tgctcaagca	2820
ttaaacacac ttgttaaaca acttagctct aattttggtg caatttcaag tgtgctaaat	2880
gatateettt egegaettga taaagtegag geggaggtae aaattgaeag gttaattaea	2940
ggcagacttc aaagccttca aacctatgta acacaacaac taatcagggc tgctgaaatc	3000
agggcttctg ctaatcttgc tgctactaaa atgtctgagt gtgttcttgg acaatcaaaa	3060
agagttgact tttgtggaaa gggctaccac cttatgtcct tcccacaagc agccccgcat	3120
ggtgttgtct tcctacatgt cacgtatgtg ccatcccagg agaggaactt caccacagcg	3180
ccagcaattt gtcatgaagg caaagcatac ttccctcgtg aaggtgtttt tgtgtttaat	3240
ggcacttett ggtttattae acagaggaae ttettttete cacaaataat taetacagae	3300
aatacatttg tctcaggaaa ttgtgatgtc gttattggca tcattaacaa cacagtttat	3360
gateetetge aacetgaget tgacteatte aaagaagage tggacaagta etteaaaaat	3420
catacatcac cagatgttga tcttggcgac atttcaggca ttaacgcttc tgtcgtcaac	3480
attcaaaaag aaattgaccg cctcaatgag gtcgctaaaa atttaaatga atcactcatt	3540
gaccttcaag aattgggaaa atatgagcaa tatattaaat ggccttggta tgtttggctc	3600
ggcttcattg ctggactaat tgccatcgtc atggttacaa tcttgctttg ttgcatgact	3660
agttgttgca gttgcctcaa gggtgcatgc tcttgtggtt cttgctgcaa gtttgatgag	3720
gatgactctg agccagttct caagggtgtc aaattacatt acacataa	3768
<210> SEQ ID NO 2 <211> LENGTH: 1255 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus strain Tor2	
<400> SEQUENCE: 2	
Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu 1 5 10 15	
Asp Arg Cys Thr Thr Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln 20 25 30	

-continued

	His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg
,	Ser	Asp 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
	Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Gly	Asn	Pro	Val 80
	Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
	Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	Lys 110	Ser	Gln
	Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Сув
	Asn	Phe 130	Glu	Leu	Cys	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met
	Gly 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Cys	Thr
	Phe	Glu	Tyr	Ile	Ser	Asp	Ala	Phe	Ser	Leu	Asp	Val	Ser	Glu	Lys	Ser
	Gly	Asn	Phe	Lys	165 His	Leu	Arg	Glu	Phe	val	Phe	Lys	Asn	Lys	Asp	Gly
	Phe	Leu	Tyr	180 Val	Tyr	Lys	Gly	Tyr	185 Gln	Pro	Ile	Asp	Val	190 Val	Arg	Asp
	Leu	Pro	195 Ser	Glv	Phe	Asn	Thr	200 Leu	Lys	Pro	Ile	Phe	205 L y s	Leu	Pro	Leu
	 	210 Tle	Δen	- <i>1</i>	Thr	Aen	215 Phe	Ara	د ب حالا	Tle	Leu	220 Thr	د <u>ب</u> جا∆	Phe	Ser	Pro
	225	 TTG	ASI		-	230		ALG	ATG	 	235	-	AId		oer	240
	Ala	Gln	Asp	Ile	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	G1 y 255	Tyr
	Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	L y s 265	Tyr	Asp	Glu	Asn	Gl y 270	Thr	Ile
	Thr	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Сув
	Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Ty r 300	Gln	Thr	Ser	Asn
	Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
	Asn	Leu	Cys	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser
,	Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Lys	Ile 345	Ser	Asn	Cys	Val	Ala 350	Asp	Tyr
	Ser	Val	Leu	Tyr	Asn	Ser	Thr	Phe	Phe	Ser	Thr	Phe	Lys	Сув	Tyr	Gly
,	Val	Ser	Ala	Thr	Lys	Leu	Asn	Asp	Leu	Cys	Phe	Ser	Asn	Val	Tyr	Ala
	Asp	3/0 Ser	Phe	Val	Val	Lys	375 Gly	Asp	Asp	Val	Arg	380 Gln	Ile	Ala	Pro	Gly
	385 Gln	Thr	Gly	Val	Ile	390 Ala	Asp	Tyr	Asn	Tyr	395 Lys	Leu	Pro	Asp	Asp	400 Phe
1	Met.	G] v	Cvs	Val	405 Leu	Ala	- Trp	Asn	Thr	410 Arg	- Asn	Ile	Asp	Ala	415 Thr	Ser
		0±¥	~ 40	420	Leu	<u>т</u>		- ADII	425	<u>т</u>	-	116	 	430		-
	l'hr	G⊥y	Asn	Tyr	Asn	Tyr	Lys	Tyr	Arg	Tyr	Leu	Arg	His	Gly	Lys	Leu

-continued

		435					440					445			
Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
L y s 465	Pro	Сув	Thr	Pro	Pro 470	Ala	Leu	Asn	Сув	Ty r 475	Trp	Pro	Leu	Asn	A sp 480
Tyr	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Val	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Сув	Gly
Pro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Cys	Val 525	Asn	Phe	Asn
Phe	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
Phe 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	A sp 560
Ser	Val	Arg	Asp	Pro 565	Lys	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Cys
Ala	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	Cys	Thr	Asp 605	Val	Ser	Thr
Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Gly 625	Asn	Asn	Val	Phe	Gln 630	Thr	Gln	Ala	Gly	Cys 635	Leu	Ile	Gly	Ala	Glu 640
His	Val	Asp	Thr	Ser 645	Tyr	Glu	Cys	Asp	Ile 650	Pro	Ile	Gly	Ala	Gly 655	Ile
Cys	Ala	Ser	Ty r 660	His	Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala
Tyr	Ser	Asn	Asn	Thr	Ile	Ala	Ile	Pro	Thr	Asn	Phe	Ser	Ile	Ser	Ile
Thr	oyu Thr	Glu	Val	Met	Pro	Val	Ser	Met	Ala	Lys	Thr	Ser	Val	Asp	Cys
705 Asn	Met	Tyr	Ile	Cys	710 Gly	Asp	Ser	Thr	Glu	715 Cys	Ala	Asn	Leu	Leu	720 Leu
Gln	Tvr	Glv	Ser	725 Phe	Cvs	Thr	Gln	Leu	730 Asn	Ara	Ala	Leu	Ser	735 Glv	Ile
5111	-1-	- T À	740	1116	~y3	- 111	5111	745	11011	· · · · · · · · · · · · · · · · · · ·	1110	ыси	750	0 I Y	110
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Ala 765	Gln	Val	Lys
Gln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Tyr	Phe	Gly 780	Gly	Phe	Asn	Phe
Ser 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	Lys	Arg	Ser	Phe	Ile 800
Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
Lys	Gln	Tyr	Gly 820	Glu	Сув	Leu	Gly	A sp 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
Cys	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr

Asp	Asp 850	Met	Ile	Ala	Ala	Ty r 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
Ile	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Lys	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Val 945	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
Asp	Ile	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Asp
Arg	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
Gln	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000	Arg)	Ala	Ser	Ala	Asn 1005	Leu 5	Ala	Ala
Thr	Lys 1010	Met)	Ser	Glu	Cys	Val 1015	Leu 5	Gly	Gln	Ser	Lys 1020	Arg)	Val	Asp	Phe
C y s 1025	Gly	Lys	Gly	Tyr	His 1030	Leu)	Met	Ser	Phe	Pro 1035	Gln 5	Ala	Ala	Pro	His 1040
Gly	Val	Val	Phe	Leu 1045	His 5	Val	Thr	Tyr	Val 1050	Pro)	Ser	Gln	Glu	Arg 1055	Asn
Gly Phe	Val Thr	Val Thr	Phe Ala 1060	Leu 1045 Pro	His 5 Ala	Val Ile	Thr Cys	Tyr His 1065	Val 1050 Glu	Pro) Gly	Ser Lys	Gln Ala	Glu Tyr 1070	Arg 1055 Phe	Asn 5 Pro
Gly Phe Arg	Val Thr Glu	Val Thr Gly 1075	Phe Ala 1060 Val	Leu 1049 Pro Phe	His Ala Val	Val Ile Phe	Thr Cys Asn 1080	Tyr His 1065 Gly	Val 1050 Glu Thr	Pro Gly Ser	Ser Lys Trp	Gln Ala Phe 1085	Glu Tyr 1070 Ile	Arg 1055 Phe Thr	Asn Pro Gln
Gly Phe Arg Arg	Val Thr Glu Asn 109(Val Thr Gly 1075 Phe	Phe Ala 1060 Val Phe	Leu 1049 Pro Phe Ser	His Ala Val Pro	Val Ile Phe Gln 1095	Thr Cys Asn 1080 Ile	Tyr His 1065 Gly Ile	Val 1050 Glu Thr Thr	Pro Gly Ser Thr	Ser Lys Trp Asp 1100	Gln Ala Phe 1085 Asn	Glu Tyr 1070 Ile Thr	Arg 1055 Phe Thr Phe	Asn Pro Gln Val
Gly Phe Arg Arg Ser 1105	Val Thr Glu Asn 1090 Gly	Val Thr Gly 1075 Phe Asn	Phe Ala 1060 Val Phe Cys	Leu 1045 Pro Phe Ser Asp	His Ala Val Pro Val 1110	Val Ile Phe Gln 1095 Val	Thr Cys Asn 1080 Ile Ile	Tyr His 1065 Gly Ile Gly	Val 1050 Glu Thr Thr Ile	Pro Gly Ser Thr Ile 1115	Ser Lys Trp Asp 1100 Asn	Gln Ala Phe 1085 Asn Xsn	Glu Tyr 1070 Ile Thr Thr	Arg 1055 Phe Thr Phe Val	Asn Pro Gln Val Tyr 1120
Gly Phe Arg Arg Ser 1105 Asp	Val Thr Glu Asn 1090 Gly Pro	Val Thr Gly 1075 Phe Asn Leu	Phe Ala 1060 Val Phe Cys Gln	Leu 1049 Pro Phe Ser Asp Pro 1129	His Ala Val Pro Val 1110 Glu	Val Ile Phe Gln 1095 Val Leu	Thr Cys Asn 1080 Ile Ile Asp	Tyr His 1065 Gly Ile Gly Ser	Val 1050 Glu Thr Thr Ile Phe 1130	Pro Gly Ser Thr Ile 1115	Ser Lys Trp Asp 1100 Asn Glu	Gln Ala Phe 1085 Asn Asn Glu	Glu Tyr 1070 Ile Thr Thr Leu	Arg 1055 Phe Thr Phe Val Asp 1135	Asn Pro Gln Val Tyr 1120 Lys
Gly Phe Arg Arg Ser 1105 Asp Tyr	Val Thr Glu Asn 1090 Gly Pro Phe	Val Thr Gly 1075 Phe D Asn Leu Lys	Phe Ala 1060 Val Phe Cys Gln Asn 1140	Leu 1045 Pro Phe Ser Asp Pro 1125 His	His Ala Val Pro Val 1110 Glu Thr	Val Ile Phe Gln 1095 Val D Leu Ser	Thr Cys Asn 1080 Ile Asp Pro	Tyr His 1065 Gly Ile Gly Ser Asp 1145	Val 1050 Glu Thr Thr Ile Phe 1130 Val	Pro Gly Ser Thr Ile 111: Lys Asp	Ser Lys Trp 1100 Asn Glu Leu	Gln Ala Phe 1085 Asn Glu Gly	Glu Tyr 1070 Ile Thr Thr Leu Asp 1150	Arg 1055 Phe Thr Phe Val Asp 1135 Ile	Asn Pro Gln Val Tyr 1120 Lys Ser
Gly Phe Arg Arg Ser 1105 Asp Tyr Gly	Val Thr Glu Asn 1090 Gly Pro Phe Ile	Val Thr Gly 1075 Phe Asn Leu Lys Asn 1155	Phe Ala 1060 Val Phe Cys Gln 1140 Ala	Leu 1045 Pro Phe Ser Asp Pro 1125 His Ser	His Ala Val Pro Val 1110 Glu Thr Val	Val Ile Phe Gln 1095 Val Leu Ser Val	Thr Cys Asn 1080 Ile Ile Asp Pro Asn 1160	Tyr His 1065 Gly Ile Gly Ser Asp 1145 Ile	Val 1050 Glu Thr Thr Ile Phe 1130 Val Gln	Pro Gly Ser Thr Ile 111! Lys Asp Lys	Ser Lys Trp Asp 1100 Asn Glu Leu Glu	Gln Ala Phe 1085 Asn Glu Glu Ile 1165	Glu Tyr 107(Ile Thr Thr Leu Asp 115(Asp	Arg 1055 Phe Thr Phe Val Asp 1135 Ile	Asn Pro Gln Val Tyr 1120 Lys Ser Leu
Gly Phe Arg Arg Ser 1105 Asp Tyr Gly Asn	Val Thr Glu Asn 1090 Gly Pro Phe Ile Glu 1170	Val Thr Gly 1075 Phe Asn Leu Lys Asn 1155 Val	Phe Ala 1060 Val Phe Cys Gln Asn 1140 Ala	Leu 104! Pro Phe Ser Asp Pro 112! His Ser Lys	His Ala Val Pro Val 1110 Glu Thr Val Asn	Val Ile Phe Gln 1095 Val Leu Val Leu Leu 1175	Thr Cys Asn 1080 Jle Ile Asp Pro Asn 1160 Asn	Tyr His 1065 Gly Ile Gly Ser Asp 1145 Ile Glu	Val 1050 Glu Thr Thr Ile Phe 1130 Val Gln Ser	Pro Gly Ser Thr Ile 1115 Lys Lys Lys	Ser Lys Trp Asp 1100 Asn Glu Leu Glu Ile 1180	Gln Ala Phe 1085 Asn Glu Glu Ile 1165 Asp	Glu Tyr 1070 Ile Thr Thr Leu Asp 1150 Asp 2 Leu	Arg 1055 Phe Thr Phe Val Asp 1135 Ile Arg Gln	Asn Pro Gln Val Tyr 1120 Lys Ser Leu Glu
Gly Phe Arg Arg Ser 1105 Asp Tyr Gly Asn Leu 1185	Val Thr Glu Asn 1090 Gly Pro Phe Ile Glu 1170 Gly	Val Thr Gly 1075 Phe Asn Leu Lys Val Val	Phe Ala 1060 Val Cys Gln Asn 1140 Ala Ala Tyr	Leu 1049 Pro Phe Ser Asp Pro 1129 His Ser Lys Glu	His Ala Val Pro Val Glu Glu Val Asn Gln 1190	Val Ile Phe Gln 1095 Val Leu Val Leu 1175 Tyr	Thr Cys Asn 1080 Ile Asp Pro Asn 1160 Asn 1160	Tyr His 1065 Gly Ile Gly Ser Asp 1145 Ile Clu Lys	Val 1050 Glu Thr Thr Ile Phe 1130 Val Gln Ser Trp	Pro Gly Ser Thr Ile 1111: Lys Lys Leu Pro 1195	Ser Lys Trp Asp 1100 Asn Glu Glu Leu Glu Ile 1180 Trp	Gln Ala Phe 1085 Asn Glu Glu Ile 1165 Asp D Tyr	Glu Tyr 107(Ile Thr Leu Asp 115(Asp Leu Val	Arg 1055 Phe Thr Phe Val Asp 1135 Ile Gln Trp	Asn Pro Gln Val Tyr 1120 Lys Ser Leu Glu Leu 1200
Gly Phe Arg Arg Ser 110: Asp Tyr Gly Asn Leu 118: Gly	Val Thr Glu Asn 1090 Gly Pro Fhe Glu 1170 Gly Phe	Val Thr Gly 1075 Phe Nasn Leu Lys Val Lys Ile	Phe Ala 1060 Val Fhe Cys Gln 1140 Ala Ala Tyr Ala	Leu 1049 Pro Phe Ser Asp Pro 1129 Ser Lys Glu Gly 1209	His Ala Val Pro Val 1110 Glu Glu Thr Val Asn Gln 1190 Leu	Val Ile Phe Gln 1095 Val Leu Ser Val Leu 1175 Tyr Ile	Thr Cys Asn 1080 Ile Asp Pro Asn 1160 Asn Ile Ala	Tyr His Gly Cly Gly Ser Ser Ile Glu Lys Ile	Val 1050 Glu Thr Thr Thr Ile Phe 1130 Val Ser Trp Val 1210	Pro Gly Ser Thr Ile 111: Lys Lys Leu Pro 119: Met	Ser Lys Trp Asp 1100 Asn Glu Leu Glu Ile 1180 Trp Val	Gln Ala Phe 1085 Asn Glu Glu Ile 1165 Asp Tyr Thr	Glu Tyr 107(Ile 5 Thr Thr Leu Asp 115(Asp 5 Leu Val Ile	Arg 1055 Phe Thr Phe Val Asp 1135 Ile Arg Gln Trp Leu 1215	Asn Pro Gln Val Tyr 1120 Lys Ser Leu Glu Leu 1200 Leu
Gly Phe Arg Arg Ser 1105 Asp Tyr Gly Asn Leu 1185 Gly Cys	Val Thr Glu Asn 1090 Gly Pro Phe Ile Glu 1170 Gly Phe Cys	Val Thr Gly 1075 Phe Asn Leu Lys Val Uys Ile Met	Phe Ala 1060 Val Phe Cys Gln 1140 Ala Ala Tyr Ala Thr 1220	Leu 1049 Pro Phe Ser Asp Pro 1129 Ser Lys Glu Glu Ser Ser	His Ala Val Pro Val Illi Glu Glu Thr Val Asn Ill9 Leu Cys	Val Ile Gln 1095 Val Leu Ser Val Leu 1175 Tyr Ile Cys	Thr Cys Asn 1080 Jle Ile Asp Pro Asn 1160 Asn Ile Ala Ser	Tyr His 1065 Gly Ile Gly Ser Asp 1145 Glu Lys Ile Cys 1225	Val 1050 Glu Thr Thr Ile Phe 1130 Val Gln Ser Trp Val 1210 Leu	Pro Gly Ser Thr Ile Lys Lys Leu Pro 1195 Met	Ser Lys Trp Asp 1100 Asn 5 Glu Leu Glu Ile 1180 Trp 5 Val Gly	Gln Ala Phe 1085 Asn Glu Glu Glu Ile 1165 Xsp Tyr Thr Ala	Glu Tyr 1070 Ile Thr Thr Leu Asp 1150 Asp 1150 Val Ile Cys 1230	Arg 1055 Phe Thr Phe Val Asp 1135 Ile Arg Gln Trp Leu 1215 Ser	Asn Pro Gln Val Tyr 1120 Lys Ser Leu Glu Leu 1200 Leu 200

Gly Val Ly: 1250	s Leu His T	yr Thr 1255				
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER	ID NO 3 TH: 3600 : DNA NISM: Artific JRE: R INFORMATIC	cial Sequenc	ce btide fragme	ent		
<400> SEQUE	ENCE: 3					
atgtttattt	tcttattatt	tcttactctc	actagtggta	gtgaccttga	ccggtgcacc	60
acttttgatg	atgttcaagc	tcctaattac	actcaacata	cttcatctat	gaggggggtt	120
tactatcctg	atgaaatttt	tagatcagac	actctttatt	taactcagga	tttatttctt	180
ccattttatt	ctaatgttac	agggtttcat	actattaatc	atacgtttgg	caaccctgtc	240
atacctttta	aggatggtat	ttattttgct	gccacagaga	aatcaaatgt	tgtccgtggt	300
tgggttttg	gttctaccat	gaacaacaag	tcacagtcgg	tgattattat	taacaattct	360
actaatgttg	ttatacgagc	atgtaacttt	gaattgtgtg	acaacccttt	ctttgctgtt	420
tctaaaccca	tgggtacaca	gacacatact	atgatattcg	ataatgcatt	taattgcact	480
ttcgagtaca	tatctgatgc	cttttcgctt	gatgtttcag	aaaagtcagg	taattttaaa	540
cacttacgag	agtttgtgtt	taaaaataaa	gatgggtttc	tctatgttta	taagggctat	600
caacctatag	atgtagttcg	tgatctacct	tctggtttta	acactttgaa	acctattttt	660
aagttgcctc	ttggtattaa	cattacaaat	tttagagcca	ttcttacagc	cttttcacct	720
gctcaagaca	tttggggcac	gtcagctgca	gcctattttg	ttggctattt	aaagccaact	780
acatttatgc	tcaagtatga	tgaaaatggt	acaatcacag	atgctgttga	ttgttctcaa	840
aatccacttg	ctgaactcaa	atgctctgtt	aagagctttg	agattgacaa	aggaatttac	900
cagacctcta	atttcagggt	tgttccctca	ggagatgttg	tgagattccc	taatattaca	960
aacttgtgtc	cttttggaga	ggtttttaat	gctactaaat	tcccttctgt	ctatgcatgg	1020
gagagaaaaa	aaatttctaa	ttgtgttgct	gattactctg	tgctctacaa	ctcaacattt	1080
ttttcaacct	ttaagtgcta	tggcgtttct	gccactaagt	tgaatgatct	ttgcttctcc	1140
aatgtctatg	cagattcttt	tgtagtcaag	ggagatgatg	taagacaaat	agcgccagga	1200
caaactggtg	ttattgctga	ttataattat	aaattgccag	atgatttcat	gggttgtgtc	1260
cttgcttgga	atactaggaa	cattgatgct	acttcaactg	gtaattataa	ttataaatat	1320
aggtatctta	gacatggcaa	gcttaggccc	tttgagagag	acatatctaa	tgtgcctttc	1380
tcccctgatg	gcaaaccttg	caccccacct	gctcttaatt	gttattggcc	attaaatgat	1440
tatggttttt	acaccactac	tggcattggc	taccaacctt	acagagttgt	agtactttct	1500
tttgaacttt	taaatgcacc	ggccacggtt	tgtggaccaa	aattatccac	tgaccttatt	1560
aagaaccagt	gtgtcaattt	taattttaat	ggactcactg	gtactggtgt	gttaactcct	1620
tcttcaaaga	gatttcaacc	atttcaacaa	tttggccgtg	atgtttctga	tttcactgat	1680
tccgttcgag	atcctaaaac	atctgaaata	ttagacattt	caccttgcgc	ttttgggggt	1740
gtaagtgtaa	ttacacctgg	aacaaatgct	tcatctgaag	ttgctgttct	atatcaagat	1800
gttaactgca	ctgatgtttc	tacagcaatt	catgcagatc	aactcacacc	agcttggcgc	1860
atatattcta	ctggaaacaa	tgtattccag	actcaagcag	gctgtcttat	aggagctgag	1920

catgtcgaca	cttcttatga	gtgcgacatt	cctattggag	ctggcatttg	tgctagttac	1980
catacagttt	ctttattacg	tagtactagc	caaaaatcta	ttgtggctta	tactatgtct	2040
ttaggtgctg	atagttcaat	tgcttactct	aataacacca	ttgctatacc	tactaacttt	2100
tcaattagca	ttactacaga	agtaatgcct	gtttctatgg	ctaaaacctc	cgtagattgt	2160
aatatgtaca	tctgcggaga	ttctactgaa	tgtgctaatt	tgcttctcca	atatggtagc	2220
ttttgcacac	aactaaatcg	tgcactctca	ggtattgctg	ctgaacagga	tcgcaacaca	2280
cgtgaagtgt	tcgctcaagt	caaacaaatg	tacaaaaccc	caactttgaa	atattttggt	2340
ggttttaatt	tttcacaaat	attacctgac	cctctaaagc	caactaagag	gtcttttatt	2400
gaggacttgc	tctttaataa	ggtgacactc	gctgatgctg	gcttcatgaa	gcaatatggc	2460
gaatgcctag	gtgatattaa	tgctagagat	ctcatttgtg	cgcagaagtt	caatggactt	2520
acagtgttgc	cacctctgct	cactgatgat	atgattgctg	cctacactgc	tgctctagtt	2580
agtggtactg	ccactgctgg	atggacattt	ggtgctggcg	ctgctcttca	aatacctttt	2640
gctatgcaaa	tggcatatag	gttcaatggc	attggagtta	cccaaaatgt	tctctatgag	2700
aaccaaaaac	aaatcgccaa	ccaatttaac	aaggcgatta	gtcaaattca	agaatcactt	2760
acaacaacat	caactgcatt	gggcaagctg	caagacgttg	ttaaccagaa	tgctcaagca	2820
ttaaacacac	ttgttaaaca	acttagctct	aattttggtg	caatttcaag	tgtgctaaat	2880
gatatccttt	cgcgacttga	taaagtcgag	gcggaggtac	aaattgacag	gttaattaca	2940
ggcagacttc	aaagccttca	aacctatgta	acacaacaac	taatcagggc	tgctgaaatc	3000
agggcttctg	ctaatcttgc	tgctactaaa	atgtctgagt	gtgttcttgg	acaatcaaaa	3060
agagttgact	tttgtggaaa	gggctaccac	cttatgtcct	tcccacaagc	agccccgcat	3120
ggtgttgtct	tcctacatgt	cacgtatgtg	ccatcccagg	agaggaactt	caccacagcg	3180
ccagcaattt	gtcatgaagg	caaagcatac	ttccctcgtg	aaggtgtttt	tgtgtttaat	3240
ggcacttctt	ggtttattac	acagaggaac	ttcttttctc	cacaaataat	tactacagac	3300
aatacatttg	tctcaggaaa	ttgtgatgtc	gttattggca	tcattaacaa	cacagtttat	3360
gatcctctgc	aacctgagct	tgactcattc	aaagaagagc	tggacaagta	cttcaaaaat	3420
catacatcac	cagatgttga	tcttggcgac	atttcaggca	ttaacgcttc	tgtcgtcaac	3480
attcaaaaag	aaattgaccg	cctcaatgag	gtcgctaaaa	atttaaatga	atcactcatt	3540
gaccttcaag	aattgggaaa	atatgagcaa	tatattaaat	ggccttggta	tgtttggctc	3600
<pre><210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF</pre>	D NO 4 TH: 1200 PRT NISM: Artific JRE: NIFORMATIC	ial Sequenc	e le fragment			
<400> SEQUE	INCE: 4					
Met Phe Ile 1	e Phe Leu Le 5	eu Phe Leu 1	Thr Leu Thr 10	Ser Gly Ser	r Asp Leu 15	
Asp Arg Cys	s Thr Thr Pl 20	ne Asp Asp V	7al Gln Ala 25	Pro Asn Ty 30	r Thr Gln	
His Thr Sei 35	r Ser Met Ai	rg Gly Val 1 40	fyr Tyr Pro	Asp Glu Ile 45	e Phe Arg	

-continued

Ser	Asp 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Gly	Asn	Pro	Val 80
Ile	Pro	Phe	Lys	A sp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	L y s 110	Ser	Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Сув
Asn	Phe 130	Glu	Leu	Cys	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met
Gly 145	Thr	Gln	Thr	His	Thr	Met	Ile	Phe	Asp	Asn	Ala	Phe	Asn	Cys	Thr
Phe	Glu	Tyr	Ile	Ser	Asp	Ala	Phe	Ser	Leu	Asp	Val	Ser	Glu	Lys	Ser
Gly	Asn	Phe	Lys	165 His	Leu	Arg	Glu	Phe	Val	Phe	Lys	Asn	Lys	Asp	Gly
Phe	Leu	Tyr	180 Val	Tyr	Lys	Gly	Tyr	185 Gln	Pro	Ile	Asp	Val	190 Val	Arg	Asp
Leu	Pro	195 Ser	Gly	Phe	Asn	Thr	200 Leu	Lys	Pro	Ile	Phe	205 L y s	Leu	Pro	Leu
G]v	210 Ile	Asn	Ile	Thr	Asn	215 Phe	Ara	Ala	Ile	Leu	220 Thr	Ala	Phe	Ser	Pro
225	c1~	7~~	G		230	ть		λ1-	G	235		Dhe	17-1	C1	240
AIA	GIU	-	тте	245	сту	Inr	ser	AT9	ата 250	AT9	ıyr	rne	vai	255	ıyr
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	L y s 265	Tyr	Asp	Glu	Asn	G1 y 270	Thr	Ile
Thr	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Сув
Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Tyr 300	Gln	Thr	Ser	Asn
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Asn	Leu	Cys	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser
Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Lys	Ile 345	Ser	Asn	Cys	Val	Ala 350	Asp	Tyr
Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	Lys 365	Cys	Tyr	Gly
Val	Ser 370	Ala	Thr	Lys	Leu	Asn 375	Asp	Leu	Cys	Phe	Ser 380	Asn	Val	Tyr	Ala
Asp	Ser	Phe	Val	Val	Lys	Gly	Asp	Asp	Val	Arg	Gln	Ile	Ala	Pro	Gly
Gln	Thr	Gly	Val	Ile	Ala	Asp	Tyr	Asn	Tyr	Lys	Leu	Pro	Asp	Asp	Phe
Met	Gly	Cys	Val	405 Leu	Ala	Trp	Asn	Thr	410 Arg	Asn	Ile	Asp	Ala	415 Thr	Ser
Thr	Gly	Asn	420 Tyr	Asn	Tyr	Lys	Tyr	425 Arg	Tyr	Leu	Arg	His	430 Gly	Lys	Leu
Arg	- Pro	435 Phe	Glu	Ara	Asp	Ile	440 Ser	Asn	Val	Pro	Phe	445 Ser	- Pro	Asn	Glv
9				9											

-continued

	450					455					460				
Lys 465	Pro	Cys	Thr	Pro	Pro 470	Ala	Leu	Asn	Сув	Ty r 475	Trp	Pro	Leu	Asn	Asp 480
Tyr	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gl y 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Val	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Сув	Gly
Pro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Cys	Val 525	Asn	Phe	Asn
Phe	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
Phe 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	Asp 560
Ser	Val	Arg	Asp	Pro 565	Lys	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Сув
Ala	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	Cys	Thr	Asp 605	Val	Ser	Thr
Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Gly 625	Asn	Asn	Val	Phe	Gln 630	Thr	Gln	Ala	Gly	С у в 635	Leu	Ile	Gly	Ala	Glu 640
His	Val	Asp	Thr	Ser 645	Tyr	Glu	Cys	Asp	Ile 650	Pro	Ile	Gly	Ala	Gly 655	Ile
Суз	Ala	Ser	Ty r 660	His	Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala
Tyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695	Ile	Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile
Thr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	L y s 715	Thr	Ser	Val	Asp	С у в 720
Asn	Met	Tyr	Ile	C y s 725	Gly	Азр	Ser	Thr	Glu 730	Cys	Ala	Asn	Leu	Leu 735	Leu
Gln	Tyr	Gly	Ser 740	Phe	Cys	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Ala 765	Gln	Val	Lys
Gln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Tyr	Phe	Gly 780	Gly	Phe	Asn	Phe
Ser 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	Lys	Arg	Ser	Phe	Ile 800
Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
Lys	Gln	Tyr	Gly 820	Glu	Cys	Leu	Gly	As p 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
Cys	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Ty r 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala

Thr A 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala M	let	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val I	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
Ile S	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Lys I 9	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Val I 945	Ъyв	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
Asp I	lle	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Asp
Arg I	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
Gln I	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000	Arg	Ala	Ser	Ala	Asn 1005	Leu	Ala	Ala
Thr I 1	ys 1010	Met	Ser	Glu	Cys	Val 1015	Leu	Gly	Gln	Ser	L y s 1020	Arg	Val	Asp	Phe
Cys 0 1025	ly	Lys	Gly	Tyr	His 1030	Leu)	Met	Ser	Phe	Pro 1035	Gln 5	Ala	Ala	Pro	His 1040
Gly V	7al	Val	Phe	Leu 1045	His 5	Val	Thr	Tyr	Val 1050	Pro)	Ser	Gln	Glu	Arg 1055	Asn
Phe T	lhr	Thr	Ala 1060	Pro)	Ala	Ile	Cys	His 1065	Glu	Gly	Lys	Ala	Ty r 1070	Phe)	Pro
Arg G	lu	Gly 1075	Val	Phe	Val	Phe	Asn 1080	Gly)	Thr	Ser	Trp	Phe 1085	Ile	Thr	Gln
Arg A 1	Asn 1090	Phe	Phe	Ser	Pro	Gln 1095	Ile	Ile	Thr	Thr	Asp 110(Asn)	Thr	Phe	Val
Ser 0 1105	Sly	Asn	Cys	Asp	Val 1110	Val)	Ile	Gly	Ile	Ile 1115	Asn 5	Asn	Thr	Val	Ty r 1120
Asp I	?ro	Leu	Gln	Pro 1125	Glu 5	Leu	Asp	Ser	Phe 1130	Lys	Glu	Glu	Leu	Asp 1135	Lys
Tyr I	?he	Lys	Asn 1140	His)	Thr	Ser	Pro	Asp 1145	Val 5	Asp	Leu	Gly	Asp 115(Ile)	Ser
Gly I	lle	Asn 1155	Ala ;	Ser	Val	Val	Asn 1160	Ile)	Gln	Lys	Glu	Ile 1165	Asp	Arg	Leu
Asn G 1	3lu 170	Val	Ala	Lys	Asn	Leu 1175	Asn	Glu	Ser	Leu	Ile 1180	Asp	Leu	Gln	Glu
Leu G 1185	ly	Lys	Tyr	Glu	Gln 1190	Tyr	Ile	Lys	Trp	Pro 1195	Trp 5	Tyr	Val	Trp	Leu 1200
<210> <211> <212> <213> <220> <223>	· SE · LE · TY · OR · FE · OT	Q ID NGTH PE: GANI ATUR HER	NO I: 72 DNA SM: E: INFC	5 9 Arti ORMAT	ficia NON:	l Se Sr	quen	ce otic	le fr	agme	ent				
<400> agtgo	• SE gtaq	QUEN tg a	ICE:	5 .gaco	cg qt	gcad	cact	: ttt	gato	gatg	ttca	agct	cc t	aatt	acact 60

-continued	
caacatactt catctatgag gggggtttac tatcctgatg aaatttttag atcagacact	120
ctttatttaa ctcaggattt atttcttcca ttttattcta atgttacagg gtttcatact	180
attaatcata cgtttggcaa ccctgtcata ccttttaagg atggtattta ttttgctgcc	240
acagagaaat caaatgttgt ccgtggttgg gtttttggtt ctaccatgaa caacaagtca	300
cagtcggtga ttattattaa caattctact aatgttgtta tacgagcatg taactttgaa	360
ttgtgtgaca accetteett tgetgtttet aaacceatgg gtaeaeagae acataetatg	420
atattcgata atgcatttaa ttgcactttc gagtacatat ctgatgcctt ttcgcttgat	480
gtttcagaaa agtcaggtaa ttttaaacac ttacgagagt ttgtgtttaa aaataaagat	540
gggtttctct atgtttataa gggctatcaa cctatagatg tagttcgtga tctaccttct	600
ggttttaaca ctttgaaacc tatttttaag ttgcctcttg gtattaacat tacaaatttt	660
agagccattc ttacagcctt ttcacctgct caagacattt ggggcacgtc agctgcagcc	720
tatttgtt	729
<pre><210> SEQ ID NO 6 <211> LENGTH: 243 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment <400> SEOUENCE: 6</pre>	
Ser Cly Ser Jen Jen Jrg Cyc Thr Thr Dhe Jen Jen Wal Cln Jla	
1 5 10 15	
Pro Asn Tyr Thr Gln His Thr Ser Ser Met Arg Gly Val Tyr Tyr Pro 20 25 30	
Asp Glu Ile Phe Arg Ser Asp Thr Leu Tyr Leu Thr Gln Asp Leu Phe	
Leu Pro Phe Tyr Ser Asn Val Thr Cly Dhe His Thr Tle Asn His Thr	
50 55 60	
Phe Gly Asn Pro Val Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala65707580	
Thr Glu Lys Ser Asn Val Val Arg Gly Trp Val Phe Gly Ser Thr Met	
US 70 70 70	
100 105 110 110 110 110 110 110 110 110	
Val Ile Arg Ala Cys Asn Phe Glu Leu Cys Asp Asn Pro Phe Ala 115 120 125	
Val Ser Lys Pro Met Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn	
130 135 140	
Ala Phe Asn Cys Thr Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp145150150155	
Val Ser Glu Lys Ser Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe 165 170 175	
Lys Asn Lys Asp Gly Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile	
180 185 190	
Asp Val Val Arg Asp Leu Pro Ser Gly Phe Asn Thr Leu Lys Pro Ile 195 200 205	
Phe Lys Leu Pro Leu Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Leu 210 215 220	

43

Thr Ala Phe 225	e Ser Pro A 23	la Gln Asp 3 0	Ile Trp Gly 235	Thr Ser Ala	a Ala Ala 240		
Tyr Phe Val	1						
<pre><210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF</pre>	ID NO 7 TH: 1740 IDNA NISM: Artific JRE: NIFORMATIC	ial Sequenc	e btide fragme	ent			
<400> SEQUE	ENCE: 7						
ggctatttaa	agccaactac	atttatgctc	aagtatgatg	aaaatggtac	aatcacagat	60	
gctgttgatt	gttctcaaaa	tccacttgct	gaactcaaat	gctctgttaa	gagctttgag	120	
attgacaaag	gaatttacca	gacctctaat	ttcagggttg	ttccctcagg	agatgttgtg	180	
agattcccta	atattacaaa	cttgtgtcct	tttggagagg	ttttaatgc	tactaaattc	240	
ccttctgtct	atgcatggga	gagaaaaaaa	atttctaatt	gtgttgctga	ttactctgtg	300	
ctctacaact	caacattttt	ttcaaccttt	aagtgctatg	gcgtttctgc	cactaagttg	360	
aatgatcttt	gcttctccaa	tgtctatgca	gattcttttg	tagtcaaggg	agatgatgta	420	
agacaaatag	cgccaggaca	aactggtgtt	attgctgatt	ataattataa	attgccagat	480	
gatttcatgg	gttgtgtcct	tgcttggaat	actaggaaca	ttgatgctac	ttcaactggt	540	
aattataatt	ataaatatag	gtatcttaga	catggcaagc	ttaggccctt	tgagagagac	600	
atatctaatg	tgcctttctc	ccctgatggc	aaaccttgca	ccccacctgc	tcttaattgt	660	
tattggccat	taaatgatta	tggtttttac	accactactg	gcattggcta	ccaaccttac	720	
agagttgtag	tactttcttt	tgaactttta	aatgcaccgg	ccacggtttg	tggaccaaaa	780	
ttatccactg	accttattaa	gaaccagtgt	gtcaatttta	attttaatgg	actcactggt	840	
actggtgtgt	taactccttc	ttcaaagaga	tttcaaccat	ttcaacaatt	tggccgtgat	900	
gtttctgatt	tcactgattc	cgttcgagat	cctaaaacat	ctgaaatatt	agacatttca	960	
ccttgcgctt	ttgggggtgt	aagtgtaatt	acacctggaa	caaatgcttc	atctgaagtt	1020	
gctgttctat	atcaagatgt	taactgcact	gatgtttcta	cagcaattca	tgcagatcaa	1080	
ctcacaccag	cttggcgcat	atattctact	ggaaacaatg	tattccagac	tcaagcaggc	1140	
tgtcttatag	gagctgagca	tgtcgacact	tcttatgagt	gcgacattcc	tattggagct	1200	
ggcatttgtg	ctagttacca	tacagtttct	ttattacgta	gtactagcca	aaaatctatt	1260	
gtggcttata	ctatgtcttt	aggtgctgat	agttcaattg	cttactctaa	taacaccatt	1320	
gctataccta	ctaacttttc	aattagcatt	actacagaag	taatgcctgt	ttctatggct	1380	
aaaacctccg	tagattgtaa	tatgtacatc	tgcggagatt	ctactgaatg	tgctaatttg	1440	
cttctccaat	atggtagctt	ttgcacacaa	ctaaatcgtg	cactctcagg	tattgctgct	1500	
gaacaggatc	gcaacacacg	tgaagtgttc	gctcaagtca	aacaaatgta	caaaacccca	1560	
actttgaaat	attttggtgg	ttttaatttt	tcacaaatat	tacctgaccc	tctaaagcca	1620	
actaagaggt	cttttattga	ggacttgctc	tttaataagg	tgacactcgc	tgatgctggc	1680	
ttcatgaagc	aatatggcga	atgcctaggt	gatattaatg	ctagagatct	catttgtgcg	1740	

<210> SEQ ID NO 8 <211> LENGTH: 580 44

<212 <213	2> TY 3> OF	PE: GANI	PRT SM:	Arti	lficia	al Se	equer	ice							
<220> FEATURE:															
<22.)> 01	. HER	INFC	RPIAI	LION		ерст	ue i	rayı	lenc					
<400)> SE	QUEN	ICE :	8											
Gly 1	Tyr	Leu	Lys	Pro 5	Thr	Thr	Phe	Met	Leu 10	Lys	Tyr	Asp	Glu	Asn 15	Gly
Thr	Ile	Thr	Asp 20	Ala	Val	Asp	Сув	Ser 25	Gln	Asn	Pro	Leu	Ala 30	Glu	Leu
Lys	Сув	Ser 35	Val	Lys	Ser	Phe	Glu 40	Ile	Asp	Lys	Gly	Ile 45	Tyr	Gln	Thr
Ser	Asn 50	Phe	Arg	Val	Val	Pro 55	Ser	Gly	Asp	Val	Val 60	Arg	Phe	Pro	Asn
Ile 65	Thr	Asn	Leu	Cys	Pro 70	Phe	Gly	Glu	Val	Phe 75	Asn	Ala	Thr	Lys	Phe 80
Pro	Ser	Val	Tyr	Ala 85	Trp	Glu	Arg	Lys	Lys 90	Ile	Ser	Asn	Cys	Val 95	Ala
Asp	Tyr	Ser	Val 100	Leu	Tyr	Asn	Ser	Thr 105	Phe	Phe	Ser	Thr	Phe 110	Lys	Cys
Tyr	Gly	Val 115	Ser	Ala	Thr	Lys	Leu 120	Asn	Asp	Leu	Cys	Phe 125	Ser	Asn	Val
Tyr	Ala 130	Asp	Ser	Phe	Val	Val 135	Lys	Gly	Asp	Asp	Val 140	Arg	Gln	Ile	Ala
Pro 145	Gly	Gln	Thr	Gly	Val 150	Ile	Ala	Asp	Tyr	Asn 155	Tyr	Lys	Leu	Pro	A sp 160
Asp	Phe	Met	Gly	C y s 165	Val	Leu	Ala	Trp	Asn 170	Thr	Arg	Asn	Ile	Asp 175	Ala
Thr	Ser	Thr	Gly 180	Asn	Tyr	Asn	Tyr	L y s 185	Tyr	Arg	Tyr	Leu	Arg 190	His	Gly
Lys	Leu	Arg 195	Pro	Phe	Glu	Arg	Asp 200	Ile	Ser	Asn	Val	Pro 205	Phe	Ser	Pro
Asp	Gly 210	Lys	Pro	Cys	Thr	Pro 215	Pro	Ala	Leu	Asn	C y s 220	Tyr	Trp	Pro	Leu
Asn 225	Asp	Tyr	Gly	Phe	Ty r 230	Thr	Thr	Thr	Gly	Ile 235	Gly	Tyr	Gln	Pro	Ty r 240
Arg	Val	Val	Val	Leu 245	Ser	Phe	Glu	Leu	Leu 250	Asn	Ala	Pro	Ala	Thr 255	Val
Суз	Gly	Pro	L y s 260	Leu	Ser	Thr	Asp	Leu 265	Ile	Lys	Asn	Gln	Cys 270	Val	Asn
Phe	Asn	Phe 275	Asn	Gly	Leu	Thr	Gly 280	Thr	Gly	Val	Leu	Thr 285	Pro	Ser	Ser
Lys	Arg 290	Phe	Gln	Pro	Phe	Gln 295	Gln	Phe	Gly	Arg	Asp 300	Val	Ser	Asp	Phe
Thr 305	Asp	Ser	Val	Arg	Asp 310	Pro	Lys	Thr	Ser	Glu 315	Ile	Leu	Asp	Ile	Ser 320
Pro	Сув	Ala	Phe	Gly 325	Gly	Val	Ser	Val	Ile 330	Thr	Pro	Gly	Thr	Asn 335	Ala
Ser	Ser	Glu	Val 340	Ala	Val	Leu	Tyr	Gln 345	Asp	Val	Asn	Cys	Thr 350	Asp	Val
Ser	Thr	Ala 355	Ile	His	Ala	Asp	Gln 360	Leu	Thr	Pro	Ala	Trp 365	Arg	Ile	Tyr

-continued

Ser	Thr 370	Gly	Asn	Asn	Val	Phe 375	Gln	Thr	Gln	Ala	Gly 380	Cys	Leu	Ile	Gly					
Ala 385	Glu	His	Val	Asp	Thr 390	Ser	Tyr	Glu	Cys	Asp 395	Ile	Pro	Ile	Gly	Ala 400					
Gly	Ile	Cys	Ala	Ser	Tyr	His	Thr	Val	Ser	Leu	Leu	Arg	Ser	Thr	Ser					
Gln	Lys	Ser	Ile	Val	Ala	Tyr	Thr	Met	Ser	Leu	Gly	Ala	Asp	Ser	Ser					
Ile	Ala	Tvr	420 Ser	Asn	Asn	Thr	Ile	425 Ala	Ile	Pro	Thr	Asn	430 Phe	Ser	Ile					
	T 1-	435	m1	<u>a</u>]			440	 				445	m 1		 TT- 1					
Ser	11e 450	Thr	Thr	GIU	Val	Met 455	Pro	Val	Ser	Met	A1a 460	Lys	Thr	Ser	Val					
Asp 465	Суз	Asn	Met	Tyr	Ile 470	Суз	Gly	Asp	Ser	Thr 475	Glu	Суз	Ala	Asn	Leu 480					
Leu	Leu	Gln	Tyr	Gly 485	Ser	Phe	Cys	Thr	Gln 490	Leu	Asn	Arg	Ala	Leu 495	Ser					
Gly	Ile	Ala	Ala 500	Glu	Gln	Asp	Arg	Asn 505	Thr	Arg	Glu	Val	Phe 510	Ala	Gln					
Val	Lys	Gln	Met	Tyr	Lys	Thr	Pro	Thr	Leu	Lys	Tyr	Phe	Gly	Gly	Phe					
Asn	Phe	Ser	Gln	Ile	Leu	Pro	520 Asp	Pro	Leu	Lys	Pro	525 Thr	Lys	Arg	Ser					
Dhe	530	c 1	1.00	Ten	Ten	535 Dhe	Den	Tara	Val	mb 10	540	N].	7.00		cl					
545	шe	GIU	Авр	Leu	Leu 550	Pne	ASN	цуз	vai	555	Leu	AIA	Asp	AIa	560					
Phe	Met	Lys	Gln	Ty r 565	Gly	Glu	Суз	Leu	Gly 570	Asp	Ile	Asn	Ala	Arg 575	Asp					
Leu	Ile	Cys	Ala 580																	
<210 <211 <212 <213 <220 <223	> SE > LE > TY > OF > FE > OT	EQ II ENGTH (PE: RGANI EATUH THER) NO H: 12 DNA ISM: RE: INF(9 266 Art: DRMAT	ificia FION	al Se : S r	equer	nce eotic	le fr	ragme	ent									
<400	> SE	EQUEN	ICE :	9																
caga	agti	tca a	atgg	actta	ac a	gtgt†	tgcca		ctgo	ctca	ctga	atga	tat ·	gatt	getgee	60				
taca gctc	ttca	aaa f	tacc	aytt: tttt:	ay t gc t	gyta atqca	aaato	act g gca	atata	yyat agqt	yga tca	atqq	cyg . cat ·	tgga	gttacc	120				
caaa	atg	ttc +	tcta	tgag	aa c	caaa	aacaa	a ato	cgcca	aacc	aat	ttaa	caa	ggcg	attagt	240				
caaa	ittea	aag a	aatc	actte	ac a	acaa	catca	a act	cgcat	ttgg	gca	agct	gca	agaco	gttgtt	300				
aacc	agaa	atg d	ctca	agca	tt a	aaca	cacti	t gti	zaaa	caac	tta	gctc	taa ·	tttt	ggtgca	360				
attt	caaq	gtg H	tgct	aaat	ga t	atcc	tttc	g cga	actto	gata	aag [.]	tcga	ggc	ggag	gtacaa	420				
attg	acag	ggt H	taat	taca	gg c	agact	ttcaa	a ago	cctto	caaa	cct	atgt	aac	acaa	caacta	480				
atca	gggo	ctg (ctga	aatco	ag g	gctto	ctgc	t aat	ctto	gctg	cta	ctaa	aat	gtct	gagtgt	540				
gttc	ttg	gac a	aatc	aaaa	ag a	gttga	actt	t tgʻ	zggaa	aagg	gct	acca	cct ·	tatg [.]	teette	600				
ccac	aago	cag o	cccc	gcat	gg t	gttg†	tatto	c cta	acato	gtca	cgt	atgt	gcc	atcc	caggag	660				
agga	acti	tca d	ccac	agcg	cc a	gcaa	tttg	t cat	gaag	ggca	aag	cata	ctt	ccct	cgtgaa	720				

46

ggtgtttttg tgtttaatgg cacttcttgg tttattacac agaggaactt cttttctcca	780
caaataatta ctacagacaa tacatttgtc tcaggaaatt gtgatgtcgt tattggcatc	840
attaacaaca cagtttatga tcctctgcaa cctgagcttg actcattcaa agaagagctg	900
gacaagtact tcaaaaatca tacatcacca gatgttgatc ttggcgacat ttcaggcatt	960
aacgcttctg tcgtcaacat tcaaaaagaa attgaccgcc tcaatgaggt cgctaaaaat	1020
ttaaatgaat cactcattga ccttcaagaa ttgggaaaat atgagcaata tattaaatgg	1080
ccttggtatg tttggctcgg cttcattgct ggactaattg ccatcgtcat ggttacaatc	1140
ttgctttgtt gcatgactag ttgttgcagt tgcctcaagg gtgcatgctc ttgtggttct	1200
tgctgcaagt ttgatgagga tgactctgag ccagttctca agggtgtcaa attacattac	1260
acataa	1266
<210> SEQ ID NO 10 <211> LENGTH: 421 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment	
<400> SEQUENCE: 10	
Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp151015	
Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala 20 25 30	
Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met 35 40 45	
Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu 50 55 60	
Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser	
Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Glv Lvs Leu	
85 90 95	
Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys 100 105 110	
Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile 115 120 125	
Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln Ile Asp Arg Leu	
Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu	
The Ary Ara Ara Giu the Arg Ara Ser Ara Ash Leu Ara Ara Thr Lys 165 170 175	
Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly 180 185 190	
Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val 195 200 205	
Val Phe Leu His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr 210 215 220	
Thr Ala Pro Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu	
225 230 235 240	
Gly Val Phe Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn	

-continued

245 250 255	
Phe Phe Ser Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly 260 265 270	
Asn Cys Asp Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr Asp Pro 275 280 285	
Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe 290 295 300	
Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile 305 310 315 320	
Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu 325 330 335	
Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly 340 345 350	
Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe 355 360 365	
Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys 370 375 380	
Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly Ser 385 390 395 400	
Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys Gly Val 405 410 415	
Lys Leu His Tyr Thr 420	
<210> SEQ ID NO 11 <211> LENGTH: 753 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S nucleotide fragment	
<400> SEQUENCE: 11	
taccagacct ctaatttcag ggttgttccc tcaggagatg ttgtgagatt ccctaatatt	60
acaaacttgt gtccttttgg agaggttttt aatgctacta aattcccttc tgtctatgca	120
tgggagagaa aaaaaatttc taattgtgtt gctgattact ctgtgctcta caactcaaca	180
tttttttcaa cctttaagtg ctatggcgtt tctgccacta agttgaatga tctttgcttc	240
tccaatgtct atgcagattc ttttgtagtc aagggagatg atgtaagaca aatagcgcca	300
ggacaaactg gtgttattgc tgattataat tataaattgc cagatgattt catgggttgt	360
gtccttgctt ggaatactag gaacattgat gctacttcaa ctggtaatta taattataaa	420
tataggtatc ttagacatgg caagcttagg ccctttgaga gagacatatc taatgtgcct	480
ttctcccctg atggcaaacc ttgcacccca cctgctctta attgttattg gccattaaat	540
gattatggtt tttacaccac tactggcatt ggctaccaac cttacagagt tgtagtactt	600
tettitgaac tittaaatge accggeeacg gittgtggae caaaattate eactgaeett	660
attaagaacc agtgtgtcaa ttttaatttt aatggactca ctggtactgg tgtgttaact	720
ccttcttcaa agagatttca accatttcaa caa	753
<210> SEO ID NO 12	

<210> SEQ ID NO 12
<211> LENGTH: 251
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence

<220 <223)> FE 3> 01	EATUF THER	RE: INFO	ORMAT	CION:	: S p	pepti	.de f	İragı	nent								
<400)> SE	EQUEN	ICE :	12														
Tyr 1	Gln	Thr	Ser	Asn 5	Phe	Arg	Val	Val	Pro 10	Ser	Gly	Asp	Val	Val 15	Arg			
Phe	Pro	Asn	Ile 20	Thr	Asn	Leu	Сув	Pro 25	Phe	Gly	Glu	Val	Phe 30	Asn	Ala			
Thr	Lys	Phe 35	Pro	Ser	Val	Tyr	Ala 40	Trp	Glu	Arg	Lys	L y s 45	Ile	Ser	Asn			
Cys	Val 50	Ala	Asp	Tyr	Ser	Val 55	Leu	Tyr	Asn	Ser	Thr 60	Phe	Phe	Ser	Thr			
Phe 65	Lys	Cys	Tyr	Gly	Val 70	Ser	Ala	Thr	Lys	Leu 75	Asn	Asp	Leu	Сув	Phe 80			
Ser	Asn	Val	Tyr	Ala 85	Asp	Ser	Phe	Val	Val 90	Lys	Gly	Asp	Asp	Val 95	Arg			
Gln	Ile	Ala	Pro 100	Gly	Gln	Thr	Gly	Val 105	Ile	Ala	Asp	Tyr	Asn 110	Tyr	Lys			
Leu	Pro	Asp 115	Asp	Phe	Met	Gly	C y s 120	Val	Leu	Ala	Trp	Asn 125	Thr	Arg	Asn			
Ile	Asp 130	Ala	Thr	Ser	Thr	Gly 135	Asn	Tyr	Asn	Tyr	L y s 140	Tyr	Arg	Tyr	Leu			
Arg 145	His	Gly	Lys	Leu	Arg 150	Pro	Phe	Glu	Arg	Asp 155	Ile	Ser	Asn	Val	Pro 160			
Phe	Ser	Pro	Asp	Gly 165	Lys	Pro	Суз	Thr	Pro 170	Pro	Ala	Leu	Asn	С у в 175	Tyr			
Trp	Pro	Leu	A sn 180	Asp	Tyr	Gly	Phe	Ty r 185	Thr	Thr	Thr	Gly	Ile 190	Gly	Tyr			
Gln	Pro	Ty r 195	Arg	Val	Val	Val	Leu 200	Ser	Phe	Glu	Leu	Leu 205	Asn	Ala	Pro			
Ala	Thr 210	Val	Суз	Gly	Pro	L y s 215	Leu	Ser	Thr	Asp	Leu 220	Ile	Lys	Asn	Gln			
С у в 225	Val	Asn	Phe	Asn	Phe 230	Asn	Gly	Leu	Thr	Gly 235	Thr	Gly	Val	Leu	Thr 240			
Pro	Ser	Ser	Lys	Arg 245	Phe	Gln	Pro	Phe	Gln 250	Gln								
<210 <211 <212 <213 <220 <223)> SE .> LE ?> TY ?> OF ?> FE ?> OT	EQ II ENGTH (PE: RGAN] EATUF THER	D NO H: 60 DNA ISM: RE: INFO	13)3 Art: DRMAT	Lficia FION:	al Se : Sr	equer	ice eotic	le fi	ragme	ent							
<400)> SE	EQUEN	ICE :	13														
tcca	atgi	tct a	atgca	agat	tc t	tttg	tagto	c aag	ggga	gatg	atgi	taaga	aca a	aataq	gegeea	6	0	
ggad	aaa	ctg o	gtgti	tatt	gc t	gatta	ataa	t tai	taaat	ttgc	caga	atgat	tt o	catgo	ggttgt	12	0	
gtco	ttgo	ett g	ggaat	tact	ag ga	aaca	ttga1	t gci	tact	tcaa	ctg	gtaat	ta t	aati	tataaa	18	0	
tata	iggta	atc 1	ttaga	acat	gg ca	aagc+	ttago	g cco	ettt	gaga	gaga	acata	atc t	aato	gtgcct	24	0	
utCt	ata	ung 8 1++ 4	+++=	aaa	ad ti	uyca acta	udeda	- aa	rtac	Taac	atte	Jutat	.ug (ucat	tac++	30 36	0	
tott	ttga	aac t	tttta	aaat	gc a	ccgq	ccaco	g gti	tgt	ggac	caaa	aatta	atc o	cacto	gacett	42	0	
	5				-			-	-	-					-			

attaagaacc agtgtgtcaa ttttaatttt aatggactca ctggtactgg tgtgttaact 480 ccttcttcaa agagatttca accatttcaa caatttggcc gtgatgtttc tgatttcact 540 gattccgttc gagatcctaa aacatctgaa atattagaca tttcaccttg cgcttttggg 600 603 ggt <210> SEQ ID NO 14 <211> LENGTH: 201 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment <400> SEOUENCE: 14 Ser Asn Val Tyr Ala Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg 10 1 5 15 Gln Ile Ala Pro Gly Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys 25 20 30 Leu Pro \mbox{Asp} Asp Phe Met Gly Cys Val Leu Ala Trp As
n Thr Arg Asn35 40 45 Ile Asp Ala Thr Ser Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu 50 55 60 Arg His Gly Lys Leu Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro 65 70 75 80 Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr 90 85 95 Trp Pro Leu Asn Asp Tyr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr 105 100 110 Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro 120 125 115 Ala Thr Val Cys Gly Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln 130 135 140 Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr 150 155 145 160 Pro Ser Ser Lys Arg Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val 165 170 175 Ser Asp Phe Thr Asp Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu 180 185 190 Asp Ile Ser Pro Cys Ala Phe Gly Gly 195 200 <210> SEQ ID NO 15 <211> LENGTH: 303 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S nucleotide fragment <400> SEQUENCE: 15 tccaatgtct atgcagattc ttttgtagtc aagggagatg atgtaagaca aatagcgcca 60 ggacaaactg gtgttattgc tgattataat tataaattgc cagatgattt catgggttgt 120 gtccttgctt ggaatactag gaacattgat gctacttcaa ctggtaatta taattataaa 180 tataggtatc ttagacatgg caagcttagg ccctttgaga gagacatatc taatgtgcct 240

-continued

ttctcccctq atqqcaaacc ttqcacccca cctqctctta attqttattq qccattaaat 300 303 qat <210> SEQ ID NO 16 <211> LENGTH: 101 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment <400> SEQUENCE: 16 Ser Asn Val Tyr Ala Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg 1 5 10 15 Gln Ile Ala Pro Gly Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys 20 25 30 Leu Pro Asp Asp Phe Met Gly Cys Val Leu Ala Trp As
n Thr Arg Asn $_{35}$ 40 $_{45}$ Ile Asp Ala Thr Ser Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu 55 50 Arg His Gly Lys Leu Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro 65 70 75 80 Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr 85 90 Trp Pro Leu Asn Asp 100 <210> SEQ ID NO 17 <211> LENGTH: 300 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S nucleotide fragment <400> SEOUENCE: 17 tatqqttttt acaccactac tqqcattqqc taccaacctt acagaqttqt aqtactttct 60 tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac tgaccttatt 120 aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt gttaactcct 180 tcttcaaaga gatttcaacc atttcaacaa tttggccgtg atgtttctga tttcactgat 240 tccgttcgag atcctaaaac atctgaaata ttagacattt caccttgcgc ttttgggggt 300 <210> SEQ ID NO 18 <211> LENGTH: 100 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment <400> SEQUENCE: 18 Tyr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val 5 10 Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly 20 25 30 Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn 40 35 45 Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg 50 55 60

Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp 75 65 70 80 Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys 85 90 95 Ala Phe Gly Gly 100 <210> SEQ ID NO 19 <211> LENGTH: 1983 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S nucleotide fragment <400> SEQUENCE: 19 agtggtagtg accttgaccg gtgcaccact tttgatgatg ttcaagctcc taattacact 60 caacatactt catctatgag gggggtttac tatcctgatg aaatttttag atcagacact 120 ctttatttaa ctcaggattt atttcttcca ttttattcta atgttacagg gtttcatact 180 attaatcata cgtttggcaa ccctgtcata ccttttaagg atggtattta ttttgctgcc 240 acagagaaat caaatgttgt ccgtggttgg gtttttggtt ctaccatgaa caacaagtca 300 cagtcggtga ttattattaa caattctact aatgttgtta tacgagcatg taactttgaa 360 ttgtgtgaca accetttett tgetgtttet aaacceatgg gtacacagae acataetatg 420 atattegata atgeatttaa ttgeaettte gagtaeatat etgatgeett ttegettgat 480 gtttcagaaa agtcaggtaa ttttaaacac ttacgagagt ttgtgtttaa aaataaagat 540 gggtttctct atgtttataa gggctatcaa cctatagatg tagttcgtga tctaccttct 600 ggttttaaca ctttgaaacc tatttttaag ttgcctcttg gtattaacat tacaaatttt 660 720 agagccattc ttacagcctt ttcacctgct caagacattt gggggcacgtc agctgcagcc 780 tattttqttq qctatttaaa qccaactaca tttatqctca aqtatqatqa aaatqqtaca atcacagatg ctgttgattg ttctcaaaat ccacttgctg aactcaaatg ctctgttaag 840 agctttgaga ttgacaaagg aatttaccag acctctaatt tcagggttgt tccctcagga 900 gatgttgtga gattccctaa tattacaaac ttgtgtcctt ttggagaggt ttttaatgct 960 actaaattcc cttctgtcta tgcatgggag agaaaaaaaa tttctaattg tgttgctgat 1020 tactctgtgc tctacaactc aacatttttt tcaaccttta agtgctatgg cgtttctgcc 1080 actaagttga atgatctttg cttctccaat gtctatgcag attcttttgt agtcaaggga 1140 gatgatgtaa gacaaatagc gccaggacaa actggtgtta ttgctgatta taattataaa 1200 ttgccagatg atttcatggg ttgtgtcctt gcttggaata ctaggaacat tgatgctact 1260 tcaactggta attataatta taaatatagg tatcttagac atggcaagct taggcccttt 1320 gagagagaca tatctaatgt gcctttctcc cctgatggca aaccttgcac cccacctgct 1380 cttaattgtt attggccatt aaatgattat ggtttttaca ccactactgg cattggctac 1440 caaccttaca gagttgtagt actttctttt gaacttttaa atgcaccggc cacggtttgt 1500 ggaccaaaat tatccactga ccttattaag aaccagtgtg tcaattttaa ttttaatgga 1560 ctcactggta ctggtgtgtt aactccttct tcaaagagat ttcaaccatt tcaacaattt 1620 ggccgtgatg tttctgattt cactgattcc gttcgagatc ctaaaacatc tgaaatatta 1680

gacatttcac cttgcgcttt tggggggtgta agtgtaatta cacctggaac aaatgcttca tctgaagttg ctgttctata tcaagatgtt aactgcactg atgtttctac agcaattcat gcagatcaac tcacaccagc ttggcgcata tattctactg gaaacaatgt attccagact caagcagget gtettatagg agetgageat gtegaeaett ettatgagtg egaeatteet attggagctg gcatttgtgc tagttaccat acagtttctt tattacgtag tactagccaa aaa <210> SEQ ID NO 20 <211> LENGTH: 661 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment <400> SEQUENCE: 20 Ser Gly Ser Asp Leu Asp Arg Cys Thr Thr Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln His Thr Ser Ser Met Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg Ser Asp Thr Leu Tyr Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser Asn Val Thr Gly Phe His Thr Ile Asn His Thr Phe Gly Asn Pro Val Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn Val Val Arg Gly Trp Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln Ser Val Ile Ile Ile Asn Asn Ser Thr Asn Val 100 105 110 Val Ile Arg Ala Cys Asn Phe Glu Leu Cys Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp Leu Pro Ser Gly Phe Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro Ala Gln Asp Ile Trp Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr Leu Lys Pro Thr Thr Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys Ser Val Lys Ser Phe Glu Ile Asp Lys Gly Ile

-continued

Tyr	Gln 290	Thr	Ser	Asn	Phe	Arg 295	Val	Val	Pro	Ser	Gly 300	Asp	Val	Val	Arg
Phe 305	Pro	Asn	Ile	Thr	Asn 310	Leu	Cys	Pro	Phe	Gly 315	Glu	Val	Phe	Asn	Ala 320
Thr	Lys	Phe	Pro	Ser 325	Val	Tyr	Ala	Trp	Glu 330	Arg	Lys	Lys	Ile	Ser 335	Asn
Сув	Val	Ala	Азр 340	Tyr	Ser	Val	Leu	Ty r 345	Asn	Ser	Thr	Phe	Phe 350	Ser	Thr
Phe	Lys	Cys 355	Tyr	Gly	Val	Ser	Ala 360	Thr	Lys	Leu	Asn	Asp 365	Leu	Cys	Phe
Ser	Asn 370	Val	Tyr	Ala	Asp	Ser 375	Phe	Val	Val	Lys	Gly 380	Asp	Asp	Val	Arg
Gln 385	Ile	Ala	Pro	Gly	Gln 390	Thr	Gly	Val	Ile	Ala 395	Asp	Tyr	Asn	Tyr	Lys 400
Leu	Pro	Asp	Asp	Phe 405	Met	Gly	Cys	Val	Leu 410	Ala	Trp	Asn	Thr	Arg 415	Asn
Ile	Asp	Ala	Thr 420	Ser	Thr	Gly	Asn	Ty r 425	Asn	Tyr	Lys	Tyr	Arg 430	Tyr	Leu
Arg	His	Gly 435	Lys	Leu	Arg	Pro	Phe 440	Glu	Arg	Asp	Ile	Ser 445	Asn	Val	Pro
Phe	Ser 450	Pro	Asp	Gly	Lys	Pro 455	Cys	Thr	Pro	Pro	Ala 460	Leu	Asn	Cys	Tyr
Trp 465	Pro	Leu	Asn	Asp	Ty r 470	Gly	Phe	Tyr	Thr	Thr 475	Thr	Gly	Ile	Gly	Ty r 480
Gln	Pro	Tyr	Arg	Val 485	Val	Val	Leu	Ser	Phe 490	Glu	Leu	Leu	Asn	Ala 495	Pro
Ala	Thr	Val	Cys	Gly	Pro	Lys	Leu	Ser	Thr	Asp	Leu	Ile	Lys	Asn	Gln
Суз	Val	Asn	500 Phe	Asn	Phe	Asn	Gly	Leu	Thr	Gly	Thr	Gly	Val	Leu	Thr
Pro	Ser	515 Ser	Lys	Arg	Phe	Gln	520 Pro	Phe	Gln	Gln	Phe	525 Gly	Arg	Asp	Val
Ser	530 Asp	Phe	Thr	Asp	Ser	535 Val	Arg	Asp	Pro	Lys	540 Thr	Ser	Glu	Ile	Leu
545 Asp	- Ile	Ser	Pro	- Cys	550 Ala	Phe	Glv	- Glv	Val	555 Ser	Val	Ile	Thr	Pro	560 Gl v
r Thr	Asn	Ale	Ser	565 Ser	Glu	Val	Ale	-1 Val	570 Leu	Tvr	Gln	Asp	Val	575 Asr	-1 Cva
тн. ть.	Acr	Wal	580	Thr	۵.1 م	T10	ні с	585	Der	-1-	Ler	The	590 Pro	21-	~ <i>1</i> 5
rnr	Азр	595	ser	IUL	AId	тте	п18 600	ALG	нар	GTU	лец	605	PTO	AIG	тср
Arg	Ile 610	Tyr	Ser	Thr	Gly	Asn 615	Asn	Val	Phe	Gln	Thr 620	Gln	Ala	Gly	Cys
Leu 625	Ile	Gly	Ala	Glu	His 630	Val	Asp	Thr	Ser	Ty r 635	Glu	Cys	Asp	Ile	Pro 640
Ile	Gly	Ala	Gly	Ile 645	Cys	Ala	Ser	Tyr	His 650	Thr	Val	Ser	Leu	Leu 655	Arg
Ser	Thr	Ser	Gln 660	Lys											
<21	0> SI	EQ II	o no	21											
<21 <21	1> LI 2> T	ENGTH	H: 19 DNA	569											

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S nucleotide fragment	
<400> SEQUENCE: 21	
tctattgtgg cttatactat gtctttaggt gctgatagtt caattgctta ctctaataac	60
accattgcta tacctactaa cttttcaatt agcattacta cagaagtaat gcctgtttct	120
atggctaaaa cctccgtaga ttgtaatatg tacatctgcg gagattctac tgaatgtgct	180
aatttgcttc tccaatatgg tagcttttgc acacaactaa atcgtgcact ctcaggtatt	240
gctgctgaac aggatcgcaa cacacgtgaa gtgttcgctc aagtcaaaca aatgtacaaa	300
accccaactt tgaaatattt tggtggtttt aatttttcac aaatattacc tgaccctcta	360
aagccaacta agaggtcttt tattgaggac ttgctcttta ataaggtgac actcgctgat	420
gctggcttca tgaagcaata tggcgaatgc ctaggtgata ttaatgctag agatctcatt	480
tgtgcgcaga agttcaatgg acttacagtg ttgccacctc tgctcactga tgatatgatt	540
gctgcctaca ctgctgctct agttagtggt actgccactg ctggatggac atttggtgct	600
ggcgctgctc ttcaaatacc ttttgctatg caaatggcat ataggttcaa tggcattgga	660
gttacccaaa atgttctcta tgagaaccaa aaacaaatcg ccaaccaatt taacaaggcg	720
attagtcaaa ttcaagaatc acttacaaca acatcaactg cattgggcaa gctgcaagac	780
gttgttaacc agaatgctca agcattaaac acacttgtta aacaacttag ctctaatttt	840
ggtgcaattt caagtgtgct aaatgatatc ctttcgcgac ttgataaagt cgaggcggag	900
gtacaaattg acaggttaat tacaggcaga cttcaaagcc ttcaaaccta tgtaacacaa	960
caactaatca gggctgctga aatcagggct tctgctaatc ttgctgctac taaaatgtct	1020
gagtgtgttc ttggacaatc aaaaagagtt gacttttgtg gaaagggcta ccaccttatg	1080
teetteecae aageageeee geatggtgtt gtetteetae atgteaegta tgtgeeatee	1140
caggagagga acttcaccac agcgccagca atttgtcatg aaggcaaagc atacttccct	1200
cgtgaaggtg tttttgtgtt taatggcact tcttggttta ttacacagag gaacttcttt	1260
tctccacaaa taattactac agacaataca tttgtctcag gaaattgtga tgtcgttatt	1320
ggcatcatta acaacacagt ttatgatcct ctgcaacctg agcttgactc attcaaagaa	1380
gagetggaca agtaetteaa aaateataea teaceagatg ttgatettgg egacatttea	1440
ggcattaacg cttctgtcgt caacattcaa aaagaaattg accgcctcaa tgaggtcgct	1500
aaaaatttaa atgaatcact cattgacctt caagaattgg gaaaatatga gcaatatatt	1560
aaatggcct	1569
<pre><210> SEQ ID NO 22 <211> LENGTH: 523 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment</pre>	
<400> SEQUENCE: 22	
Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala 1 5 10 15	
Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile 20 25 30	

-continued

Thr	Thr	Glu 35	Val	Met	Pro	Val	Ser 40	Met	Ala	Lys	Thr	Ser 45	Val	Asp	Cys
Asn	Met 50	Tyr	Ile	Сув	Gly	Asp 55	Ser	Thr	Glu	Сув	Ala 60	Asn	Leu	Leu	Leu
Gln 65	Tyr	Gly	Ser	Phe	С у в 70	Thr	Gln	Leu	Asn	Arg 75	Ala	Leu	Ser	Gly	Ile 80
Ala	Ala	Glu	Gln	Asp 85	Arg	Asn	Thr	Arg	Glu 90	Val	Phe	Ala	Gln	Val 95	Lys
Gln	Met	Tyr	L y s 100	Thr	Pro	Thr	Leu	Lys 105	Tyr	Phe	Gly	Gly	Phe 110	Asn	Phe
Ser	Gln	Ile	Leu	Pro	Asp	Pro	Leu	Lys	Pro	Thr	Lys	Arg	Ser	Phe	Ile
Glu	Asp	Leu	Leu	Phe	Asn	Lys	Val	Thr	Leu	Ala	Asp	Ala	Gly	Phe	Met
Lys	130 Gln	Tyr	Gly	Glu	Cys	135 Leu	Gly	Asp	Ile	Asn	140 Ala	Arg	Asp	Leu	Ile
145 Cys	Ala	Gln	Lys	Phe	150 Asn	Gly	Leu	Thr	Val	155 Leu	Pro	Pro	Leu	Leu	160 Thr
Asp	Asp	Met	Ile	165 Ala	Ala	- Tvr	Thr	Ala	170 Ala	Len	Val	Ser	Glv	175 Thr	Ala
тър пъ	лı-	net	180	л.d	nid	- y -		185	лı.	Jeu	vai	ol-	190	1111 Dr	nia
Thr	Ala	GL y 195	Чrр	Thr	Рhe	σту	A⊥a 200	GΤλ	ALA	A⊥a	Leu	G1n 205	тте	Pro	гhе
Ala	Met 210	Gln	Met	Ala	Tyr	Arg 215	Phe	Asn	Gly	Ile	Gly 220	Val	Thr	Gln	Asn
Val 225	Leu	Tyr	Glu	Asn	Gln 230	Lys	Gln	Ile	Ala	Asn 235	Gln	Phe	Asn	Lys	Ala 240
Ile	Ser	Gln	Ile	Gln 245	Glu	Ser	Leu	Thr	Thr 250	Thr	Ser	Thr	Ala	Leu 255	Gly
Lys	Leu	Gln	Asp 260	Val	Val	Asn	Gln	Asn 265	Ala	Gln	Ala	Leu	Asn 270	Thr	Leu
Val	Lys	Gln 275	Leu	Ser	Ser	Asn	Phe 280	Gly	Ala	Ile	Ser	Ser 285	Val	Leu	Asn
Asp	Ile 290	Leu	Ser	Arg	Leu	Asp 295	Lys	Val	Glu	Ala	Glu 300	Val	Gln	Ile	Asp
Arg	Leu	Ile	Thr	Gly	Arg 310	Leu	Gln	Ser	Leu	Gln 315	Thr	Tyr	Val	Thr	Gln 320
Gln	Leu	Ile	Arg	Ala	Ala	Glu	Ile	Arg	Ala	Ser	Ala	Asn	Leu	Ala	Ala
Thr	Lys	Met	Ser	JZ5 Glu	Cys	Val	Leu	Gly	Gln	Ser	Lys	Arg	Val	Asp	Phe
Cys	Gly	Lys	340 Gly	Tyr	His	Leu	Met	345 Ser	Phe	Pro	Gln	Ala	350 Ala	Pro	His
Glv	Val	355 Val	Phe	Leu	His	Val	360 Thr	Tvr	Val	Pro	Ser	365 Gln	Glu	Ara	Asn
	370	Thr	 مام	Dro	210	375	Curc	-1-	C1		380			Dhe	Dro
385	inr	Inr	AId	PT0	лта 390	тте	сув	пта	GIU	395	- түз	нта 	ıyr	rne	400
Arg	Glu	Gly	Val	Phe 405	Val	Phe	Asn	Gly	Thr 410	Ser	Trp	Phe	Ile	Thr 415	Gln
Arg	Asn	Phe	Phe 420	Ser	Pro	Gln	Ile	Ile 425	Thr	Thr	Asp	Asn	Thr 430	Phe	Val
Ser	Gly	Asn	Cys	Asp	Val	Val	Ile	Gly	Ile	Ile	Asn	Asn	Thr	Val	Tyr

-continued

435 440 445	
Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys 450 455 460	
Tyr Phe Lys Asn HisThr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser465470475480	
Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu 485 490 495	
Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu 500 505 510	
Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro 515 520	
<210> SEQ ID NO 23 <211> LENGTH: 864 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S nucleotide fragment	
<400> SEQUENCE: 23	
tctattgtgg cttatactat gtctttaggt gctgatagtt caattgctta ctctaataac	60
accattgcta tacctactaa cttttcaatt agcattacta cagaagtaat gcctgtttct	120
atggctaaaa cctccgtaga ttgtaatatg tacatctgcg gagattctac tgaatgtgct	180
aatttgette tecaatatgg tagettttge acacaactaa ategtgeaet eteaggtatt	240
gctgctgaac aggatcgcaa cacacgtgaa gtgttcgctc aagtcaaaca aatgtacaaa	300
accccaactt tgaaatattt tggtggtttt aatttttcac aaatattacc tgaccctcta	360
aagccaacta agaggtcttt tattgaggac ttgctcttta ataaggtgac actcgctgat	420
gctggcttca tgaagcaata tggcgaatgc ctaggtgata ttaatgctag agatctcatt	480
tgtgcgcaga agttcaatgg acttacagtg ttgccacctc tgctcactga tgatatgatt	540
gctgcctaca ctgctgctct agttagtggt actgccactg ctggatggac atttggtgct	600
ggcgctgctc ttcaaatacc ttttgctatg caaatggcat ataggttcaa tggcattgga	660
gttacccaaa atgttctcta tgagaaccaa aaacaaatcg ccaaccaatt taacaaggcg	720
attagtcaaa ttcaagaatc acttacaaca acatcaactg cattgggcaa gctgcaagac	780
gttgttaacc agaatgctca agcattaaac acacttgtta aacaacttag ctctaatttt	840
ggtgcaattt caagtgtgct aaat	864
<210> SEQ ID NO 24 <211> LENGTH: 288 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment	
<400> SEQUENCE: 24	
Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala 1 5 10 15	
Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile 20 25 30	
Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys 35 40 45	

-continued

Asn M	Met 50	Tyr	Ile	Cys	Gly	Asp 55	Ser	Thr	Glu	Сув	Ala 60	Asn	Leu	Leu	Leu					
Gln 7 65	fyr	Gly	Ser	Phe	С у в 70	Thr	Gln	Leu	Asn	Arg 75	Ala	Leu	Ser	Gly	Ile 80					
Ala A	Ala	Glu	Gln	Asp	Arg	Asn	Thr	Arg	Glu	Val	Phe	Ala	Gln	Val	Lys					
Gln M	Met	Tyr	Lys	85 Thr	Pro	Thr	Leu	Lys	90 Tyr	Phe	Gly	Gly	Phe	Asn	Phe					
G	a 1	- -	100	Deer		D	T	105	- D	m]	- -		110	Dl	T] -					
Ser (JIN	11e 115	Leu	Pro	Asp	Pro	Leu 120	Lys	Pro	Thr	Lys	Arg 125	Ser	Pne	lle					
Glu /	Asp 130	Leu	Leu	Phe	Asn	Lys 135	Val	Thr	Leu	Ala	Asp 140	Ala	Gly	Phe	Met					
Lys (Gln	Tyr	Gly	Glu	Cys 150	Leu	Gly	Asp	Ile	Asn 155	Ala	Arg	Asp	Leu	Ile 160					
Cys A	Ala	Gln	Lys	Phe	Asn	Gly	Leu	Thr	Val	Leu	Pro	Pro	Leu	Leu	Thr					
Asn	Asp	Met	Tle	165 Ala	Ala	Tvr	Thr	Ala	170 Ala	Leu	Val	Ser	Glv	175 Thr	Ala					
110 p 1			180	mu		-] -		185		Lou	vui	001	190							
Thr A	Ala	Gly 195	Trp	Thr	Phe	Gly	Ala 200	Gly	Ala	Ala	Leu	Gln 205	Ile	Pro	Phe					
Ala M	Met 210	Gln	Met	Ala	Tyr	Arg 215	Phe	Asn	Gly	Ile	Gl y 220	Val	Thr	Gln	Asn					
Val I	Leu	Tyr	Glu	Asn	Gln	Lys	Gln	Ile	Ala	Asn	Gln	Phe	Asn	Lys	Ala					
Ile s	Ser	Gln	Ile	Gln	Glu	Ser	Leu	Thr	Thr	Thr	Ser	Thr	Ala	Leu	Gly					
	_	- 1	_	245	1	_	- 1	_	250	- 1		_	_	255	_					
Lys I	Leu	Gln	Asp 260	Val	Val	Asn	Gln	Asn 265	Ala	Gln	Ala	Leu	Asn 270	Thr	Leu					
Val I	Lys	Gln 275	Leu	Ser	Ser	Asn	Phe 280	Gly	Ala	Ile	Ser	Ser 285	Val	Leu	Asn					
<210> <211> <212> <213> <220> <220> <223> <400>	> SE > LE > TY > OF > FE > OT > SE	EQ II ENGTH (PE: RGAN] EATUH FHER EQUEN) NO H: 72 DNA ISM: RE: INF(NCE:	25 20 Art DRMAT	ificia FION	al Se : Sr	equer	nce eotic	le fr	ragme	ent									
gatat	tcct	ttt (cgcg	actto	ga t	aaag	tcga	a dcé	ggago	gtac	aaa	ttga	cag o	gtta	attaca	60				
ggcag	gact	ttc a	aaag	cctt	ca a	accta	atgta	a aca	acaad	caac	taa	tcag	ddc .	tgct	gaaatc	120				
agggo	ctto	ctg o	ctaa	tett	gc t	gcta	ctaaa	a ato	gtcto	gagt	gtg.	ttct	tgg a	acaa	tcaaaa	180				
agagt	utga ttqt	tct †	tcct	acato	aa g qt c	acqta	accad	g cca	atcco	caqq	aqa	qqaa	ige a	agee	acaqcq	240 300				
ccago	caat	ttt (gtca	tgaa	gg c	aaago	cata	tto	ccct	cgtg	aag	gtgt	ttt ·	tgtg	tttaat	360				
ggcad	ctto	ett o	ggtt	tatta	ac a	caga	ggaa	e tto	ttt	ctc	cac	aaat	aat ·	tact	acagac	420				
aatao	catt	ttg †	tctc	agga	aa t	tgtga	atgto	c gti	tatto	ggca	tca	ttaa	caa (caca	gtttat	480				
gatco	ctct	tgc a	aacc	tgag	ct t	gacto	catto	c aaa	agaag	gagc	tgg	acaa	gta (cttc	aaaat	540				
cata	cato	cac (caga	tgtt:	ga t	cttg	gcgao	c ati	tca	ggca	tta	acgc [.]	ttc ·	tgtc.	gtcaac	600				
attca	aaaa	aag a	aat	tgac	cg c	ctca	atgag	g gto	cgcta	aaaa	att	taaa	tga a	atca	ctcatt	660				

58

gaccttcaag aattgggaaa atatgagcaa tatattaaat ggccttggta tgtttggctc 720																
<pre><210> SEQ ID NO 26 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: S peptide fragment <400> SEQUENCE: 26</pre>																
<400)> SE	QUEN	ICE :	26												
Asp 1	Ile	Leu	Ser	Arg 5	Leu	Asp	Lys	Val	Glu 10	Ala	Glu	Val	Gln	Ile 15	Asp	
Arg	Leu	Ile	Thr 20	Gly	Arg	Leu	Gln	Ser 25	Leu	Gln	Thr	Tyr	Val 30	Thr	Gln	
Gln	Leu	Ile 35	Arg	Ala	Ala	Glu	Ile 40	Arg	Ala	Ser	Ala	Asn 45	Leu	Ala	Ala	
Thr	Lys 50	Met	Ser	Glu	Cys	Val 55	Leu	Gly	Gln	Ser	Lys 60	Arg	Val	Asp	Phe	
С у в 65	Gly	Lys	Gly	Tyr	His 70	Leu	Met	Ser	Phe	Pro 75	Gln	Ala	Ala	Pro	His 80	
Gly	Val	Val	Phe	Leu 85	His	Val	Thr	Tyr	Val 90	Pro	Ser	Gln	Glu	Arg 95	Asn	
Phe	Thr	Thr	Ala 100	Pro	Ala	Ile	Cys	His 105	Glu	Gly	Lys	Ala	Ty r 110	Phe	Pro	
Arg	Glu	Gl y 115	Val	Phe	Val	Phe	Asn 120	Gly	Thr	Ser	Trp	Phe 125	Ile	Thr	Gln	
Arg	Asn 130	Phe	Phe	Ser	Pro	Gln 135	Ile	Ile	Thr	Thr	Asp 140	Asn	Thr	Phe	Val	
Ser 145	Gly	Asn	Суз	Asp	Val 150	Val	Ile	Gly	Ile	Ile 155	Asn	Asn	Thr	Val	Tyr 160	
Asp	Pro	Leu	Gln	Pro 165	Glu	Leu	Asp	Ser	Phe 170	Lys	Glu	Glu	Leu	Asp 175	Lys	
Tyr	Phe	Lys	Asn 180	His	Thr	Ser	Pro	A sp 185	Val	Asp	Leu	Gly	Asp 190	Ile	Ser	
Gly	Ile	Asn 195	Ala	Ser	Val	Val	Asn 200	Ile	Gln	Lys	Glu	Ile 205	Asp	Arg	Leu	
Asn	Glu 210	Val	Ala	Lys	Asn	Leu 215	Asn	Glu	Ser	Leu	Ile 220	Asp	Leu	Gln	Glu	
Leu 225	Gly	Lys	Tyr	Glu	Gln 230	Tyr	Ile	Lys	Trp	Pro 235	Trp	Tyr	Val	Trp	Leu 240	
<210 <211 <212 <213 <400)> SE l> LE 2> TY 3> OF)> SE	Q II NGTH PE: QUEN	NO N: 12 DNA SM:	27 269 SARS 27	5 cor	ronav	virus	s str	ain	Urba	ni					
atgt	cctga	ata a	atgga	accc	ca at	caaa	accaa	a cgt	agto	Jccc	ccc	gcati	tac a	attt	ggtgga	60
ccca	acaga	att d	caact	tgaca	aa ta	aacca	agaat	s gga	aggad	cgca	atgo	gggca	aag o	gccaa	aacag	120
cgco	cgaco	ccc a	aaggi	ttta	cc ca	aataa	atact	: gcg	gtctt	ggt	tcad	cage	tct (cacto	cagcat	180
ggca	aagga	agg a	act	tagai	tt co	cctco	gaggo	c caç	lddco	gttc	caat	tcaa	cac d	caata	agtggt	240
ccaç	gatga	acc a	aati	tggc∣	ta ct	acco	gaaga	a gct	acco	cgac	gagt	ttcg	tgg H	tggto	Jacggc	300
-continued																
--	------															
aaaatgaaag agctcagccc cagatggtac ttctattacc taggaactgg cccagaagct	360															
tcacttccct acggcgctaa caaagaaggc atcgtatggg ttgcaactga gggagccttg	420															
aatacaccca aagaccacat tggcacccgc aatcctaata acaatgctgc caccgtgcta	480															
caacttcctc aaggaacaac attgccaaaa ggcttctacg cagagggaag cagaggcggc	540															
agtcaagcct cttctcgctc ctcatcacgt agtcgcggta attcaagaaa ttcaactcct	600															
ggcagcagta ggggaaattc tcctgctcga atggctagcg gaggtggtga aactgccctc	660															
gcgctattgc tgctagacag attgaaccag cttgagagca aagtttctgg taaaggccaa	720															
caacaacaag gccaaactgt cactaagaaa tctgctgctg aggcatctaa aaagcctcgc	780															
caaaaacgta ctgccacaaa acagtacaac gtcactcaag catttgggag acgtggtcca	840															
gaacaaaccc aaggaaattt cggggaccaa gacctaatca gacaaggaac tgattacaaa	900															
cattggccgc aaattgcaca atttgctcca agtgcctctg cattctttgg aatgtcacgc	960															
attggcatgg aagtcacacc ttcgggaaca tggctgactt atcatggagc cattaaattg	1020															
gatgacaaag atccacaatt caaagacaac gtcatactgc tgaacaagca cattgacgca	1080															
tacaaaacat tcccaccaac agagcctaaa aaggacaaaa agaaaaagac tgatgaagct	1140															
cagcetttge egcagagaca aaagaageag eccaetgtga etettettee tgeggetgae	1200															
atggatgatt tetecagaca actteaaaat teeatgagtg gagettetge tgatteaact	1260															
caggcataa	1269															
<210> SEQ ID NO 28 <211> LENGTH: 422 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus strain Urbani <400> SEQUENCE: 28																
Met Ser Asp Asn Gly Pro Gln Ser Asn Gln Arg Ser Ala Pro Arg Ile																
Thr Phe Gly Gly Pro Thr Asp Ser Thr Asp Asn Asn Gln Asn Gly Gly																
Arg Asn Gly Ala Arg Pro Lys Gln Arg Arg Pro Gln Gly Leu Pro Asn																
Asn Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lys Glu Glu																
Leu Arg Fne Pro Arg Gly Gin Gly Val Pro Ile Asn Thr Asn Ser Gly 65 70 75 80																
Pro Asp Asp Gln Ile Gly Tyr Tyr Arg Arg Ala Thr Arg Arg Val Arg 85 90 95																
Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 105 110																
Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 120 125																
Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 135 140																
Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 150 155 160																
Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 170 175																
Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg																

-continued

	180		185		190	
Gly Asn Sei 195	Arg Asn	Ser Thr Pro 200	Gly Ser S	er Arg Gly 205	y Asn Ser	Pro
Ala Arg Met 210	Ala Ser	Gly Gly Gly 215	Glu Thr A	la Leu Ala 220	a Leu Leu	Leu
Leu Asp Arc 225	Leu Asn	Gln Leu Glu 230	Ser Lys V	al Ser Gly 35	y Lys Gly	Gln 240
Gln Gln Glr	Gly Gln 245	Thr Val Thr	Lys Lys S 250	er Ala Ala	a Glu Ala 255	Ser
Lys Lys Pro	Arg Gln 260	Lys Arg Thr	Ala Thr L 265	ys Gln Tyr	Asn Val 270	. Thr
Gln Ala Phe 275	e Gly Arg	Arg Gly Pro 280	Glu Gln T	nr Gln Gly 285	y Asn Phe	e Gly
Asp Gln Asp 290) Leu Ile	Arg Gln Gly 295	Thr Asp T	yr Lys His 300	s Trp Pro	Gln
Ile Ala Glr 305	ı Phe Ala	Pro Ser Ala 310	Ser Ala Pl 3	ne Phe Gly 15	y Met Ser	Arg 320
Ile Gly Met	Glu Val 325	Thr Pro Ser	Gly Thr T 330	rp Leu Thi	r Ty r His 335	Gly
Ala Ile Lys	Leu Asp 340	Asp Lys Asp	Pro Gln P 345	ne Lys Asp	Asn Val 350	Ile
Leu Leu Asr 355	Lys His	Ile Asp Ala 360	Tyr Lys T	nr Phe Pro 365	o Pro Thr 5	Glu
Pro Lys Lys 370	a Asp Lys	Lys Lys Lys 375	Thr Asp G	lu Ala Glr 380	n Pro Leu	1 Pro
Gln Arg Glr 385	Lys Lys	Gln Pro Thr 390	Val Thr L	eu Leu Pro 95	o Ala Ala	400
Met Asp Asp	Phe Ser 405	Arg Gln Leu	Gln Asn S 410	er Met Sei	r Gly Ala 415	Ser
Ala Asp Ser	Thr Gln 420	Ala				
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER	D NO 29 H: 633 DNA ISM: Art RE: INFORMA	ificial Seque TION: N nucl	nce eotide frag	ment		
<400> SEQUE	NCE: 29					
atgtctgata	atggacco	ca atcaaacca	a cgtagtgc	cc cccgcat	tac attt	ggtgga 60
cccacagatt	caactgac	aa taaccagaa	t ggaggacg	ca atggggg	caag gcca	aaacag 120
cgccgacccc	aaggttta	cc caataatac	t gcgtcttg	gt tcacago	ctct cact	cagcat 180
ggcaaggagg	aacttaga	tt ccctcgagg	c cagggcgt	c caatcaa	acac caat	agtggt 240
ccagatgacc	aaattggc	ta ctaccgaag	a gctacccg	ac gagttee	gtgg tggt	gacgge 300
aaaatgaaag	agctcagc	cc cagatggta	c ttctatta	cc taggaad	ctgg ccca	gaaget 360
tcacttccct	acggcgct	aa caaagaagg	c atcgtatg	gg ttgcaad	ctga ggga	gcettg 420
aatacaccca	aagaccac	at tggcacccg	c aatcctaa	a acaatgo	ctgc cacc	gtgcta 480
caacttcctc	aaggaaca	ac attgccaaa	a ggcttcta	cg cagaggg	gaag caga	uggegge 540
agtcaagcct	cttctcgc	tc ctcatcacg	t agtcgcgg	a attcaag	gaaa ttca	actcct 600

	+ -	m 11	~ ~
-con			eu

633

60

120

180

240

300 360

ggcagcagta ggggaaattc tcctgctcga atg <210> SEQ ID NO 30 <211> LENGTH: 211 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N peptide fragment <400> SEQUENCE: 30 Met Ser Asp Asn Gly Pro Gln Ser Asn Gln Arg Ser Ala Pro Arg Ile 10 1 Thr Phe Gly Gly Pro Thr Asp Ser Thr Asp Asn Asn Gln Asn Gly Gly 20 25 30 Arg Asn Gly Ala Arg Pro Lys Gln Arg Arg Pro Gln Gly Leu Pro Asn 35 40 45 Asn Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lys Glu Glu 55 50 60 Leu Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asn Thr Asn Ser Gly 70 65 75 Pro Asp Asp Gln Ile Gly Tyr Tyr Arg Arg Ala Thr Arg Arg Val Arg 85 90 95 Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 105 110 Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 120 125 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 135 140 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 150 155 160 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 170 175 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 185 190 180 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 195 200 205 Ala Arg Met 210 <210> SEQ ID NO 31 <211> LENGTH: 636 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N nucleotide fragment <400> SEQUENCE: 31 gctagcggag gtggtgaaac tgccctcgcg ctattgctgc tagacagatt gaaccagctt gagagcaaag tttctggtaa aggccaacaa caacaaggcc aaactgtcac taagaaatct gctgctgagg catctaaaaa gcctcgccaa aaacgtactg ccacaaaaca gtacaacgtc actcaagcat ttgggagacg tggtccagaa caaacccaag gaaatttcgg ggaccaagac ctaatcagac aaggaactga ttacaaacat tggccgcaaa ttgcacaatt tgctccaagt gcctctgcat tctttggaat gtcacgcatt ggcatggaag tcacaccttc gggaacatgg

ctgacttatc atggagccat taaattggat gacaaagatc cacaattcaa agacaacgtc	420
atactgctga acaagcacat tgacgcatac aaaacattcc caccaacaga gcctaaaaag	480
gacaaaaaga aaaagactga tgaagctcag cctttgccgc agagacaaaa gaagcagccc	540
actgtgactc ttcttcctgc ggctgacatg gatgatttct ccagacaact tcaaaattcc	600
atgagtggag cttctgctga ttcaactcag gcataa	636
<210> SEQ ID NO 32 <211> LENGTH: 211 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N peptide fragment	
<400> SEQUENCE: 32	
Ala Ser Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu Asp Arg 1 5 10 15	
Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln Gln Gln Gln 20 25 30	
Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser Lys Lys Pro 35 40 45	
Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr Gln Ala Phe 50 55 60	
Gly Arg Arg Gly Pro Glu Gln Thr Gln Gly Asn Phe Gly Asp Gln Asp 65 70 75 80	
Leu Ile Arg Gln Gly Thr Asp Tyr Lys His Trp Pro Gln Ile Ala Gln 85 90 95	
Phe Ala Pro Ser Ala Ser Ala Phe Phe Gly Met Ser Arg Ile Gly Met 100 105 110	
Glu Val Thr Pro Ser Gly Thr Trp Leu Thr Tyr His Gly Ala Ile Lys 115 120 125	
Leu Asp Asp Lys Asp Pro Gln Phe Lys Asp Asn Val Ile Leu Leu Asn 130 135 140	
Lys His Ile Asp Ala Tyr Lys Thr Phe Pro Pro Thr Glu Pro Lys Lys 145 150 155 160	
Asp Lys Lys Lys Thr Asp Glu Ala Gln Pro Leu Pro Gln Arg Gln 165 170 175	
Lys Lys Gln Pro Thr Val Thr Leu Leu Pro Ala Ala Asp Met Asp Asp 180 185 190	
Phe Ser Arg Gln Leu Gln Asn Ser Met Ser Gly Ala Ser Ala Asp Ser 195 200 205	
Thr Gln Ala 210	
<210> SEQ ID NO 33 <211> LENGTH: 603 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N nucleotide fragment	
<400> SEQUENCE: 33	
ggcaaaatga aagagctcag ccccagatgg tacttctatt acctaggaac tggcccagaa	60
gcttcacttc cctacggcgc taacaaagaa ggcatcgtat gggttgcaac tgagggagcc	120

ttgaatacac ccaaagacca cattggcacc cgcaatccta ataacaatgc tgccaccgtg 180 ctacaacttc ctcaaggaac aacattgcca aaaggcttct acgcagaggg aagcagaggc 240 ggcagtcaag cctcttctcg ctcctcatca cgtagtcgcg gtaattcaag aaattcaact 300 cctggcagca gtaggggaaa ttctcctgct cgaatggcta gcggaggtgg tgaaactgcc 360 ctcgcgctat tgctgctaga cagattgaac cagcttgaga gcaaagtttc tggtaaaggc 420 caacaacaac aaggccaaac tgtcactaag aaatctgctg ctgaggcatc taaaaagcct 480 cgccaaaaac gtactgccac aaaacagtac aacgtcactc aagcatttgg gagacgtggt 540 ccagaacaaa cccaaggaaa tttcggggac caagacctaa tcagacaagg aactgattac 600 aaa 603 <210> SEQ ID NO 34 <211> LENGTH: 201 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N peptide fragment <400> SEQUENCE: 34

Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr Tyr Leu Gly 10 Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala As
n Lys Glu Gly Ile 20 25 30 30 $\end{tabular}$ Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys Asp His Ile 35 40 45 Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu Gln Leu Pro 50 55 60 Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly Ser Arg Gly 65 70 75 80 Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg Gly Asn Ser 85 90 95 Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro Ala Arg Met 100 105 110 Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu Leu Asp Arg 125 115 120 Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln Gln Gln Gln 130 135 140 Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser Lys Lys Pro 145 150 155 160 Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr Gln Ala Phe 165 170 175 Gly Arg Arg Gly Pro Glu Gln Thr Gln Gly Asn Phe Gly Asp Gln Asp 180 185 190 Leu Ile Arg Gln Gly Thr Asp Tyr Lys 195 200

<210> SEQ ID NO 35 <211> LENGTH: 603 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N nucleotide fragment

aaa <210> SEQ ID NO 36 <211> LENGTH: 201 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N peptide fragment <400> SEQUENCE: 36 Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lys Glu Glu Leu 10 5 15 1 Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asn Thr Asn Ser Gly Pro 20 25 30 Asp Asp Gln Ile Gly Tyr Tyr Arg Arg Ala Thr Arg Arg Val Arg Gly 35 40 45 Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr Tyr 50 55 60 Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys Glu 65 70 75 80 Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys Asp 85 90 His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu Gln 100 105 110 Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly Ser 120 115 125 Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg Gly 140 135 130 Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro Ala 145 150 155 160 Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu Leu 165 170 175 Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln Gln 180 185 190 Gln Gln Gly Gln Thr Val Thr Lys Lys

200

actgcgtctt ggttcacagc tctcactcag catggcaagg aggaacttag attccctcga 60 ggccagggcg ttccaatcaa caccaatagt ggtccagatg accaaattgg ctactaccga 120 agagctaccc gacgagttcg tggtggtgac ggcaaaatga aagagctcag ccccagatgg 180 tacttctatt acctaggaac tggcccagaa gcttcacttc cctacggcgc taacaaagaa 240 ggcatcgtat gggttgcaac tgagggagcc ttgaatacac ccaaagacca cattggcacc 300 cgcaatcota ataacaatgo tgccaccgtg ctacaactto ctcaaggaac aacattgoca 360 aaaggettet acgeagaggg aageagagge ggeagteaag eetetteteg etecteatea 420 cgtagtcgcg gtaattcaag aaattcaact cctggcagca gtaggggaaa ttctcctgct 480 cgaatggcta gcggaggtgg tgaaactgcc ctcgcgctat tgctgctaga cagattgaac 540 600 cagcttgaga gcaaagtttc tggtaaaggc caacaacaac aaggccaaac tgtcactaag 603

-continued

<400> SEQUENCE: 35

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N nucleotide fragment <400> SEQUENCE: 37 cgcaatccta ataacaatgc tgccaccgtg ctacaacttc ctcaaggaac aacattgcca 60 aaaggettet acgeagaggg aageagagge ggeagteaag ectetteteg etecteatea 120 cgtagtcgcg gtaattcaag aaattcaact cctggcagca gtaggggaaa ttctcctgct 180 cgaatggcta gcggaggtgg tgaaactgcc ctcgcgctat tgctgctaga cagattgaac 240 cagettgaga gcaaagttte tggtaaagge caacaacaac aaggeeaaac tgteactaag 300 aaatctgctg ctgaggcatc taaaaagcct cgccaaaaac gtactgccac aaaacagtac 360 aacgtcactc aagcatttgg gagacgtggt ccagaacaaa cccaaggaaa tttcggggac 420 caagacctaa tcagacaagg aactgattac aaacattggc cgcaaattgc acaattgct 480 ccaagtgcct ctgcattctt tggaatgtca cgcattggca tggaagtcac accttcggga 540 acatggctga cttatcatgg agccattaaa ttggatgaca aagatccaca attcaaagac 600 aacgtcatac tgctgaacaa gcacattgac gcatacaaaa cattcccacc aacagagcct 660 aaaaaggaca aaaagaaaaa gactgatgaa gctcagcctt tgccgcagag acaaaagaag 720 cageceactg tgactettet teetgegget gae 753 <210> SEQ ID NO 38 <211> LENGTH: 251 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: N peptide fragment <400> SEQUENCE: 38 Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu Gln Leu Pro Gln Gly 1 5 10 15 Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly Ser Arg Gly Gly Ser 20 25 30Gln Ala Ser Ser Arg Ser Ser Arg Ser Arg Gly Asn Ser Arg Asn 40 35 Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro Ala Arg Met Ala Ser 50 55 60 Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu Asp Arg Leu Asn 65 70 75 80 Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln Gln Gln Gln Gly Gln 90 Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser Lys Lys Pro Arg Gln 105 100 110 Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr Gln Ala Phe Gly Arg 115 120 125 Arg Gly Pro Glu Gln Thr Gln Gly Asn Phe Gly Asp Gln Asp Leu Ile 135 130 140 Arg Gln Gly Thr Asp Tyr Lys His Trp Pro Gln Ile Ala Gln Phe Ala 145 150 155 160 Pro Ser Ala Ser Ala Phe Phe Gly Met Ser Arg Ile Gly Met Glu Val 165 170 175

-continued

Thr Pro Ser Gly Thr Trp Leu Thr Tyr His Gly Ala Ile Lys Leu Asp 180 185 190 Asp Lys Asp Pro Gln Phe Lys Asp Asn Val Ile Leu Leu Asn Lys His 200 205 195 Ile Asp Ala Tyr Lys Thr Phe Pro Pro Thr Glu Pro Lys Lys Asp Lys 210 215 220 Lys Lys Lys Thr Asp Glu Ala Gln Pro Leu Pro Gln Arg Gln Lys Lys 230 235 225 240 Gln Pro Thr Val Thr Leu Leu Pro Ala Ala Asp 245 250 <210> SEQ ID NO 39 <211> LENGTH: 221 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus GD322 <400> SEQUENCE: 39 Met Ala Asp Asn Gly Thr Ile Thr Val Glu Glu Leu Lys Gln Leu Leu 5 10 1 Glu Gln Trp Asn Leu Val Ile Gly Phe Leu Phe Leu Ala Trp Ile Met 20 25 30 Leu Leu Gln Phe Ala Tyr Ser Asn Arg Asn Arg Phe Leu Tyr Ile Ile 40 45 Lys Leu Val Phe Leu Tr
p Leu Leu Tr
p Pro Val Thr Leu Ala Cys Phe50 55
 60 Val Leu Ala Ala Val Tyr Arg Ile Asn Trp Val Thr Gly Gly Ile Ala 65 70 75 80 Ile Ala Met Ala Cys Ile Val Gly Leu Met Trp Leu Ser Tyr Phe Val859095 Ala Ser Phe Arg Leu Phe Ala Arg Thr Arg Ser Met Trp Ser Phe Asn 105 100 110 Pro Glu Thr Asn Ile Leu Leu Asn Val Pro Leu Arg Gly Thr Ile Val 115 120 125 Thr Arg Pro Leu Met Glu Ser Glu Leu Val Ile Gly Ala Val Ile Ile 130 135 140 Arg Gly His Leu Arg Met Ala Gly His Ser Leu Gly Arg Cys Asp Ile 160 145 150 155 Lys Asp Leu Pro Lys Glu Ile Thr Val Ala Thr Ser Arg Thr Leu Ser 165 170 175 Tyr Tyr Lys Leu Gly Ala Ser Gln Arg Val Gly Thr Asp Ser Gly Phe 180 185 190 Ala Ala Tyr Asn Arg Tyr Arg Ile Gly Asn Tyr Lys Leu Asn Thr Asp 195 200 205 His Ala Gly Ser Asn Asp Asn Ile Ala Leu Leu Val Gln 210 215 220 <210> SEQ ID NO 40 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Epitope tag <400> SEQUENCE: 40 Asp Tyr Lys Asp Asp Asp Asp Lys

1 5 <210> SEQ ID NO 41 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Epitope tag <400> SEOUENCE: 41 Asp Leu Tyr Asp Asp Asp Asp Lys 5 <210> SEQ ID NO 42 <211> LENGTH: 3768 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus Tor2 <400> SEQUENCE: 42 atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga ccggtgcacc 60 acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat gaggggggtt 120 tactatcctg atgaaatttt tagatcagac actctttatt taactcagga tttatttctt 180 ccattttatt ctaatgttac agggtttcat actattaatc atacgtttgg caaccctgtc 240 atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt tgtccgtggt 300 tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat taacaattct 360 420 actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaaccettt etttgetgtt 480 totaaaccca tgggtacaca gacacatact atgatattcg ataatgcatt taattgcact ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg taattttaaa 540 cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta taagggctat 600 caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa acctatttt 660 aagttgcctc ttggtattaa cattacaaat tttagagcca ttcttacagc cttttcacct 720 gctcaagaca tttggggcac gtcagctgca gcctattttg ttggctattt aaagccaact 780 acatttatgc tcaagtatga tgaaaatggt acaatcacag atgctgttga ttgttctcaa 840 aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa aggaatttac 900 cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc taatattaca 960 aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt ctatgcatgg 1020 gagagaaaaa aaatttctaa ttgtgttgct gattactctg tgctctacaa ctcaacattt 1080 ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct ttgcttctcc 1140 aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat agcgccagga 1200 caaactggtg ttattgctga ttataattat aaattgccag atgatttcat gggttgtgtc 1260 cttgcttgga atactaggaa cattgatgct acttcaactg gtaattataa ttataaatat 1320 aggtatetta gacatggcaa gettaggeee tttgagagag acatatetaa tgtgeettte 1380 tcccctgatg gcaaaccttg caccccacct gctcttaatt gttattggcc attaaatgat 1440 tatggttttt acaccactac tggcattggc taccaacctt acagagttgt agtactttct 1500 tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac tgaccttatt 1560 aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt gttaactcct 1620

-continued

tcttcaaaga	gatttcaacc	atttcaacaa	tttggccgtg	atgtttctga	tttcactgat	1680
tccgttcgag	atcctaaaac	atctgaaata	ttagacattt	caccttgcgc	ttttgggggt	1740
gtaagtgtaa	ttacacctgg	aacaaatgct	tcatctgaag	ttgctgttct	atatcaagat	1800
gttaactgca	ctgatgtttc	tacagcaatt	catgcagatc	aactcacacc	agcttggcgc	1860
atatattcta	ctggaaacaa	tgtattccag	actcaagcag	gctgtcttat	aggagctgag	1920
catgtcgaca	cttcttatga	gtgcgacatt	cctattggag	ctggcatttg	tgctagttac	1980
catacagttt	ctttattacg	tagtactagc	caaaaatcta	ttgtggctta	tactatgtct	2040
ttaggtgctg	atagttcaat	tgcttactct	aataacacca	ttgctatacc	tactaacttt	2100
tcaattagca	ttactacaga	agtaatgcct	gtttctatgg	ctaaaacctc	cgtagattgt	2160
aatatgtaca	tctgcggaga	ttctactgaa	tgtgctaatt	tgcttctcca	atatggtagc	2220
ttttgcacac	aactaaatcg	tgcactctca	ggtattgctg	ctgaacagga	tcgcaacaca	2280
cgtgaagtgt	tcgctcaagt	caaacaaatg	tacaaaaccc	caactttgaa	atattttggt	2340
ggttttaatt	tttcacaaat	attacctgac	cctctaaagc	caactaagag	gtcttttatt	2400
gaggacttgc	tctttaataa	ggtgacactc	gctgatgctg	gcttcatgaa	gcaatatggc	2460
gaatgcctag	gtgatattaa	tgctagagat	ctcatttgtg	cgcagaagtt	caatggactt	2520
acagtgttgc	cacctctgct	cactgatgat	atgattgctg	cctacactgc	tgctctagtt	2580
agtggtactg	ccactgctgg	atggacattt	ggtgctggcg	ctgctcttca	aatacctttt	2640
gctatgcaaa	tggcatatag	gttcaatggc	attggagtta	cccaaaatgt	tctctatgag	2700
aaccaaaaac	aaatcgccaa	ccaatttaac	aaggcgatta	gtcaaattca	agaatcactt	2760
acaacaacat	caactgcatt	gggcaagctg	caagacgttg	ttaaccagaa	tgctcaagca	2820
ttaaacacac	ttgttaaaca	acttagctct	aattttggtg	caatttcaag	tgtgctaaat	2880
gatatccttt	cgcgacttga	taaagtcgag	gcggaggtac	aaattgacag	gttaattaca	2940
ggcagacttc	aaagccttca	aacctatgta	acacaacaac	taatcagggc	tgctgaaatc	3000
agggcttctg	ctaatcttgc	tgctactaaa	atgtctgagt	gtgttcttgg	acaatcaaaa	3060
agagttgact	tttgtggaaa	gggctaccac	cttatgtcct	tcccacaagc	agccccgcat	3120
ggtgttgtct	tcctacatgt	cacgtatgtg	ccatcccagg	agaggaactt	caccacagcg	3180
ccagcaattt	gtcatgaagg	caaagcatac	ttccctcgtg	aaggtgtttt	tgtgtttaat	3240
ggcacttctt	ggtttattac	acagaggaac	ttcttttctc	cacaaataat	tactacagac	3300
aatacatttg	tctcaggaaa	ttgtgatgtc	gttattggca	tcattaacaa	cacagtttat	3360
gatcctctgc	aacctgagct	tgactcattc	aaagaagagc	tggacaagta	cttcaaaaat	3420
catacatcac	cagatgttga	tcttggcgac	atttcaggca	ttaacgcttc	tgtcgtcaac	3480
attcaaaaag	aaattgaccg	cctcaatgag	gtcgctaaaa	atttaaatga	atcactcatt	3540
gaccttcaag	aattgggaaa	atatgagcaa	tatattaaat	ggccttggta	tgtttggctc	3600
ggcttcattg	ctggactaat	tgccatcgtc	atggttacaa	tcttgctttg	ttgcatgact	3660
agttgttgca	gttgcctcaa	gggtgcatgc	tcttgtggtt	cttgctgcaa	gtttgatgag	3720
gatgactctg	agccagttct	caagggtgtc	aaattacatt	acacataa		3768

<210> SEQ ID NO 43 <211> LENGTH: 1255

<212 <213	2> TY 3> OF	PE: GANI	PRT SM:	SARS	5 coi	ronav	7irus	s Tor	2							
<400)> SE	QUEN	ICE :	43												
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu	
Asp	Arg	Cys	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	Ala	Pro	Asn	Tyr 30	Thr	Gln	
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg	
Ser	Asp 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser	
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Gly	Asn	Pro	Val 80	
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn	
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	L y s 110	Ser	Gln	
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Cys	
Asn	Phe 130	Glu	Leu	Cys	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met	
Gl y 145	Thr	Gln	Thr	His	T hr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Cys	Thr 160	
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Leu 170	Asp	Val	Ser	Glu	L y s 175	Ser	
Gly	Asn	Phe	Lys 180	His	Leu	Arg	Glu	Phe 185	Val	Phe	Lys	Asn	L y s 190	Asp	Gly	
Phe	Leu	Ty r 195	Val	Tyr	Lys	Gly	Ty r 200	Gln	Pro	Ile	Asp	Val 205	Val	Arg	Asp	
Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Lys	Leu	Pro	Leu	
Gl y 225	Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240	
Ala	Gln	Asp	Ile	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr	
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	Lys 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile	
Thr	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Сув	
Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Ty r 300	Gln	Thr	Ser	Asn	
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320	
Asn	Leu	Cys	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser	
Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Lys	Ile 345	Ser	Asn	Cys	Val	Ala 350	Asp	Tyr	
Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	L y s 365	Cys	Tyr	Gly	
Val	Ser 370	Ala	Thr	Lys	Leu	Asn 375	Asp	Leu	Cys	Phe	Ser 380	Asn	Val	Tyr	Ala	

A sp 385	Ser	Phe	Val	Val	Lys 390	Gly	Asp	Asp	Val	Arg 395	Gln	Ile	Ala	Pro	Gly 400
Gln	Thr	Gly	Val	Ile 405	Ala	Asp	Tyr	Asn	Ty r 410	Lys	Leu	Pro	Asp	Asp 415	Phe
Met	Gly	Cys	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser
Thr	Gly	Asn 435	Tyr	Asn	Tyr	Lys	Ty r 440	Arg	Tyr	Leu	Arg	His 445	Gly	Lys	Leu
Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
L y s 465	Pro	Сув	Thr	Pro	Pro 470	Ala	Leu	Asn	Cys	Ty r 475	Trp	Pro	Leu	Asn	Asp 480
Tyr	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Val	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Суз	Gly
Pro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Суз	Val 525	Asn	Phe	Asn
Phe	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
Phe 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	Asp 560
Ser	Val	Arg	Asp	Pro 565	Lys	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Сув
Ala	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	Сув	Thr	Asp 605	Val	Ser	Thr
Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Gl y 625	Asn	Asn	Val	Phe	Gln 630	Thr	Gln	Ala	Gly	С у в 635	Leu	Ile	Gly	Ala	Glu 640
His	Val	Asp	Thr	Ser 645	Tyr	Glu	Сув	Asp	Ile 650	Pro	Ile	Gly	Ala	Gly 655	Ile
Cys	Ala	Ser	Ty r 660	His	Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala
Tyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695	Ile	Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile
Thr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	L y s 715	Thr	Ser	Val	Asp	С у в 720
Asn	Met	Tyr	Ile	C y s 725	Gly	Asp	Ser	Thr	Glu 730	Cys	Ala	Asn	Leu	Leu 735	Leu
Gln	Tyr	Gly	Ser 740	Phe	Cys	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Ala 765	Gln	Val	Lys
Gln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Tyr	Phe	Gly 780	Gly	Phe	Asn	Phe

Ser 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	Lys	Arg	Ser	Phe	Ile 800
Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
Lys	Gln	Tyr	Gly 820	Glu	Cys	Leu	Gly	As p 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
Сув	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Ty r 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu	Asn	Gln	Lys	Gln	Ile	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
Ile	Ser	Gln	Ile	Gln	Glu	Ser	Leu	Thr	Thr	Thr	Ser	Thr	Ala	Leu	Gly
Lys	Leu	Gln	Asp	Val	Val	Asn	920 Gln	Asn	Ala	Gln	Ala	925 Leu	Asn	Thr	Leu
Val	930 Lys	Gln	Leu	Ser	Ser	935 Asn	Phe	Gly	Ala	Ile	940 Ser	Ser	Val	Leu	Asn
945 Asp	Ile	Leu	Ser	Arg	950 Leu	Asp	Lys	Val	Glu	955 Ala	Glu	Val	Gln	Ile	960 Asp
Arg	Leu	Ile	Thr	965 Gly	Arg	Leu	Gln	Ser	970 Leu	Gln	Thr	Tyr	Val	975 Thr	Gln
Gln	Leu	Ile	980 Ara	Ala	Ala	Glu	Ile	985 Arg	Ala	Ser	Ala	Asn	990 Leu	Ala	Ala
	Tree	995 Mot		c1			1000	0	c1~	Cor	T	100	5	u	Dha
rnr	Lys 101(met)	Ser	GIU	cys	vai 1015	ьeu 5	σтλ	GIN	5er	цуз 102	Arg 0	vai	Asp	Pne
С у в 1025	Gly	Lys	Gly	Tyr	His 103	Leu 0	Met	Ser	Phe	Pro 103	Gln 5	Ala	Ala	Pro	His 1040
Gly	Val	Val	Phe	Leu 104	His 5	Val	Thr	Tyr	Val 105	Pro 0	Ser	Gln	Glu	Arg 1055	Asn 5
Phe	Thr	Thr	Ala 1060	Pro 0	Ala	Ile	Суз	His 1065	Glu 5	Gly	Lys	Ala	Ty r 1070	Phe)	Pro
Arg	Glu	Gly 1075	Val 5	Phe	Val	Phe	Asn 1080	Gly C	Thr	Ser	Trp	Phe 108	Ile 5	Thr	Gln
Arg	Asn 109(Phe)	Phe	Ser	Pro	Gln 1095	Ile 5	Ile	Thr	Thr	Asp 110	Asn O	Thr	Phe	Val
Ser 1105	Gly	Asn	Cys	Asp	Val 111	Val 0	Ile	Gly	Ile	Ile 111	Asn 5	Asn	Thr	Val	Ty r 1120
Asp	Pro	Leu	Gln	Pro 112	Glu 5	Leu	Asp	Ser	Phe 113	Lys 0	Glu	Glu	Leu	Asp 1135	L y s
Tyr	Phe	Lys	Asn 114(His O	Thr	Ser	Pro	Asp 1145	Val 5	Asp	Leu	Gly	Asp 115(Ile)	Ser
Gly	Ile	Asn 1155	Ala 5	Ser	Val	Val	Asn 1160	Ile)	Gln	Lys	Glu	Ile 1165	Asp	Arg	Leu
Asn	Glu 1170	Val	Ala	Lys	Asn	Leu 117'	Asn 5	Glu	Ser	Leu	Ile 1180	Asp 0	Leu	Gln	Glu
Leu	Gly	Lys	Tyr	Glu	Gln	Tyr	Ile	Lys	Trp	Pro	Trp	Tyr	Val	Trp	Leu
	_	-	-			-			-		-	-		-	

1185 1190 1195 1200 Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu 1205 1210 1215 Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys 1220 1225 1230 Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1235 1240 1245 Gly Val Lys Leu His Tyr Thr 1250 1255 <210> SEQ ID NO 44 <211> LENGTH: 3768 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus Frankfurt 1 <400> SEOUENCE: 44 atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga ccggtgcacc 60 acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat gaggggggtt 120 tactatcctg atgaaatttt tagatcagac actctttatt taactcagga tttatttctt 180 ccattttatt ctaatgttac agggtttcat actattaatc atacgtttgg caaccctgtc 240 atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt tgtccgtggt 300 tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat taacaattct 360 actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaacccttt ctttgctgtt 420 tctaaaccca tgggtacaca gacacatact atgatattcg ataatgcatt taattgcact 480 ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg taattttaaa 540 cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta taagggctat 600 caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa acctatttt 660 720 aagttqcctc ttqqtattaa cattacaaat tttaqaqcca ttcttacaqc cttttcacct gctcaagaca tttggggcac gtcagctgca gcctattttg ttggctattt aaagccaact 780 acatttatgc tcaagtatga tgaaaatggt acaatcacag atgctgttga ttgttctcaa 840 aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa aggaatttac 900 cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc taatattaca 960 aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt ctatgcatgg 1020 gagagaaaaa aaatttctaa ttgtgttgct gattactctg tgctctacaa ctcaacattt 1080 ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct ttgcttctcc 1140 aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat agcgccagga 1200 caaactggtg ttattgctga ttataattat aaattgccag atgatttcat gggttgtgtc 1260 cttgcttgga atactaggaa cattgatgct acttcaactg gtaattataa ttataaatat 1320 aggtatetta gacatggcaa gettaggeee tttgagagag acatatetaa tgtgeettte 1380 tcccctgatg gcaaaccttg caccccacct gctcttaatt gttattggcc attaaatgat 1440 tatggttttt acaccactac tggcattggc taccaacctt acagagttgt agtactttct 1500 tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac tgaccttatt 1560 aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt gttaactcct 1620

				-contin	luea	
tcttcaaaga gat	ttcaacc	atttcaacaa	tttggccgtg	atgtttctga	tttcactgat	1680
tccgttcgag atc	ctaaaac	atctgaaata	ttagacattt	caccttgctc	ttttgggggt	1740
gtaagtgtaa tta	cacctgg	aacaaatgct	tcatctgaag	ttgctgttct	atatcaagat	1800
gttaactgca ctg	atgtttc	tacagcaatt	catgcagatc	aactcacacc	agcttggcgc	1860
atatattcta ctg	gaaacaa	tgtattccag	actcaagcag	gctgtcttat	aggagctgag	1920
catgtcgaca ctt	cttatga	gtgcgacatt	cctattggag	ctggcatttg	tgctagttac	1980
catacagttt ctt	tattacg	tagtactagc	caaaaatcta	ttgtggctta	tactatgtct	2040
ttaggtgctg ata	gttcaat	tgcttactct	aataacacca	ttgctatacc	tactaacttt	2100
tcaattagca tta	ctacaga	agtaatgcct	gtttctatgg	ctaaaacctc	cgtagattgt	2160
aatatgtaca tct	gcggaga	ttctactgaa	tgtgctaatt	tgcttctcca	atatggtagc	2220
ttttgcacac aac	taaatcg	tgcactctca	ggtattgctg	ctgaacagga	tcgcaacaca	2280
cgtgaagtgt tcg	ctcaagt	caaacaaatg	tacaaaaccc	caactttgaa	atattttggt	2340
ggttttaatt ttt	cacaaat	attacctgac	cctctaaagc	caactaagag	gtcttttatt	2400
gaggacttgc tct	ttaataa	ggtgacactc	gctgatgctg	gcttcatgaa	gcaatatggc	2460
gaatgcctag gtg	atattaa	tgctagagat	ctcatttgtg	cgcagaagtt	caatggactt	2520
acagtgttgc cac	ctctgct	cactgatgat	atgattgctg	cctacactgc	tgctctagtt	2580
agtggtactg cca	ctgctgg	atggacattt	ggtgctggcg	ctgctcttca	aatacctttt	2640
gctatgcaaa tgg	catatag	gttcaatggc	attggagtta	cccaaaatgt	tctctatgag	2700
aaccaaaaac aaa	tcgccaa	ccaatttaac	aaggcgatta	gtcaaattca	agaatcactt	2760
acaacaacat caa	ctgcatt	gggcaagctg	caagacgttg	ttaaccagaa	tgctcaagca	2820
ttaaacacac ttg	ttaaaca	acttagctct	aattttggtg	caatttcaag	tgtgctaaat	2880
gatateettt ege	gacttga	taaagtcgag	gcggaggtac	aaattgacag	gttaattaca	2940
ggcagacttc aaa	gccttca	aacctatgta	acacaacaac	taatcagggc	tgctgaaatc	3000
agggcttctg cta	atcttgc	tgctactaaa	atgtctgagt	gtgttcttgg	acaatcaaaa	3060
agagttgact ttt	gtggaaa	gggctaccac	cttatgtcct	tcccacaagc	agccccgcat	3120
ggtgttgtct tcc	tacatgt	cacgtatgtg	ccatcccagg	agaggaactt	caccacagcg	3180
ccagcaattt gtc	atgaagg	caaagcatac	ttecctegtg	aaggtgtttt	tgtgtttaat	3240
ggcacttctt ggt	ttattac	acagaggaac	ttcttttctc	cacaaataat	tactacagac	3300
aatacatttg tct	caggaaa	ttgtgatgtc	gttattggca	tcattaacaa	cacagtttat	3360
gatectetge aac	ctgagct	tgactcattc	aaagaagagc	tggacaagta	cttcaaaaat	3420
catacatcac cag	atgttga	ttttggcgac	atttcaggca	ttaacgcttc	tgtcgtcaac	3480
attcaaaaag aaa	ttgaccg	cctcaatgag	gtcgctaaaa	atttaaatga	atcactcatt	3540
gaccttcaag aat	tgggaaa	atatgagcaa	tatattaaat	ggccttggta	tgtttggctc	3600
ggcttcattg ctg	gactaat	tgccatcgtc	atggttacaa	tcttgctttg	ttgcatgact	3660
agttgttgca gtt	gcctcaa	gggtgcatgc	tcttgtggtt	cttgctgcaa	gtttgatgag	3720
gatgactctg agc	cagttct	caagggtgtc	aaattacatt	acacataa		3768

<210> SEQ ID NO 45 <211> LENGTH: 1255 <212> TYPE: PRT

<213	213> ORGANISM:		SARS coronavirus Frankfurt 1												
<400)> SE	QUEN	ICE :	45											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Сув	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	Ala	Pro	Asn	Tyr 30	Thr	Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg
Ser	Asp 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Gly	Asn	Pro	Val 80
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	L y s 110	Ser	Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Cys
Asn	Phe 130	Glu	Leu	Cys	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met
Gl y 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Cys	Thr 160
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Leu 170	Asp	Val	Ser	Glu	L y s 175	Ser
Gly	Asn	Phe	L y s 180	His	Leu	Arg	Glu	Phe 185	Val	Phe	Lys	Asn	L y s 190	Asp	Gly
Phe	Leu	Ty r 195	Val	Tyr	Lys	Gly	Ty r 200	Gln	Pro	Ile	Asp	Val 205	Val	Arg	Asp
Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Lys	Leu	Pro	Leu
Gl y 225	Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240
Ala	Gln	Азр	Ile	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	L y s 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile
Thr	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Cys
Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Tyr 300	Gln	Thr	Ser	Asn
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Asn	Leu	Cys	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser
Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Lys	Ile 345	Ser	Asn	Cys	Val	Ala 350	Asp	Tyr
Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	L y s 365	Cys	Tyr	Gly
Val	Ser 370	Ala	Thr	Lys	Leu	Asn 375	Asp	Leu	Cys	Phe	Ser 380	Asn	Val	Tyr	Ala

-continued

Asg Ser Phe Val Val Lyu Gly Asp Asp Val Arg Gin Ile Ala Pro Gly 395Gin Thr Gly Val Ile Ala Asp Tyr Asn Tyr Law Lyu E Leu Pro Asp Asp Phe 415Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser 420Thr Gly Asn Tyr Law Tyr Lyw Tyr Arg Tyr Leu Arg His Gly Lye Leu 435Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Asp 455Yr Gly Phe Tyr Thr Thr Thr Gly Tyr Tyr Tyr Dro Leu Asn Asp 455465Yr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gly Pro Leu Asn Asp 455477Yr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gly Pro Leu Asn Asp 455485Yr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gly Asn Phe Asn 516Pro Lys Leu Ser The Asp Leu Ile Use Asn Ala Pro Ala Thr Val Cys Gly 510Pro Lys Leu Ser Thr Asp Leu Ile U Asn Ala Pro Ala Thr Val Cys Gly 510Pro Lys Leu Ser Thr Asp Leu Ile Tyr Gly Thr Gly Thr Asn Phe Thr Asp 525Ser Val Arg Asp Pro Lyw Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys 556Ser Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser 500Ser Phe Gly Gly Val Ser Val Ile Thr Pro Ala Thr Asp Val Ser Thr 600Ala Ile Kis Ala Asp Cln Leu Thr Pro Ala Thr Asp Val Ser Thr 610Gly Asn Asn Val Phe Gln He Gin Ala Gly Cys Leu Ile Gly Ala Gly 633Ser Fhe Gly Gly Val Ser Val Ile Thr Pro Ala Thr Asp Ser Ile Ser FieldGly Asn Asn Val Phe Gln Leu Thr Pro Ala Thr Asp Val Ser Thr 640645Ser He Gly Gly Na Ser Thr Gin Ala Gly Cys Leu Ile Gly Ala Gly 64564664764864964964964964964																	
Gin Thr Giy Val 110 Ala App Tyr Apr Tyr Lys Leu Pro Asp Asp Pre 415 Net Giy Cys Val Leu Ala Trp Asn Thr Agr Asq Asq Ile Asp Ala Thr Ser 425 Thr Giy Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His Giy Lys Leu 420 Arg Fro Phe Glu Arg App Ile Ser Asn Val Pro Phe Ser Pro Asp Gly 450 Tyr Giy Phe Tyr Thr Thr Gly Ile Giy Tyr Trp Pro Leu Ash Asp 445 Tyr Giy Phe Tyr Thr Thr Gly Ile Giy Tyr Gin Pro Tyr Arg Val 405 Val Val Leu Ser Phe Glu Leu Leu Ash Ala Pro Ala Thr Val Cys Gly 550 Pro Lys Leu Ser Thr App Leu Ile Lys Asn Oly Val Ash Phe Ash 525 Pro Lys Leu Ser Thr App Leu Ile Lys Ash Val Pro Fies For Lys Arg 50 Pro Lys Leu Ser Thr App Leu Ile Lys Ash Val Fro Fies For Cys 55 Ser Val Arg App Pro 519 He Asn Gly Leu Thr Gly The Gly The Glu Thr Pro Gly Thr Ash Phe Ash 525 Ser Val Arg App Pro 519 He Glu Pro Phe Glu Glu The Calu Leu Ang Ala Pro Gly Thr Ash Ala Ser Ser 590 Glu Val Ala Ser Tyr Glu Thr Thr Gro Glu Thr Ash Cys Thr Ash 560 Ser Val Arg App Pro 519 He Glu Fro Phe Glu Glu The Fro Ro Glu Thr Ash Ala Ser Ser 590 Glu Val Ala Val Leu Tyr Glu App Val Ash Cys Thr Ash Ala Ser Ser 590 Glu Val Ala Val Leu Tyr Glu App Val Ash Cys Thr Ash Val Ser Thr 610 Gly Ash Ash Val Phe Glu Thr Glu Ash Thr Arg Cu Ile Gly Ala Glu 640 645 Gro Ash Car Tyr Thr Met Ser Leu Leu App Ser Thr Ser Glu Glu 640 Gig Ash Ash Val Phe Glu Thr Chi Ala Gly Cys Leu Ile Gly Ala Glu 640 Gro Ash Ash Thr Ser Tyr Glu Cys Ash Fils Pro Fils For Gro 770 Ser Ile Val Ala Tyr Thr Met Ser Leu Leu App Ser Thr Ser Glu Lis 640 His Val Asp Thr Ser Tyr Glu Cys Ash Fils Pro Fils Fils Fils 670 Gro Ash Ash Thr Ile Ala Ile Pro Thr Ash Phe Ser Ile Gro 770 Ash Met Tyr Thr Met Ser Leu Gly Ala Asp See Ser Ile Ala 657 Gro Ash Ash Thr Ile Ala Ile Pro Thr Ash Phe Ser Ile Ser Ile Gro 700 Thr Thr Glu Val Het Tro Val Ser Het Ala Lys Thr Ser Cu Ile Jae 720 Ash Met Tyr Thr Het For Val Ser Het Ala Lys Thr Ser Cu Ile Jae 720 Ash Met Tyr Thr Cys Gro Thr Glu Cys Ash Ash Ash Ash Thr Arg Glu Val Phe Ash Heg Glu Val Lys 720 Ash Met Tyr Thr Cys Thr Pro Thr Leu Lys Tyr Phe G	Asp 385	Ser	Phe	Val	Val	L y s 390	Gly	Asp	Asp	Val	Arg 395	Gln	Ile	Ala	Pro	Gly 400	
Net Gly Cys Val Leu Ala Trp Aan Thr Arg Aan Ile Aap Ala Thr Ser $\frac{430}{430}$ Thr Gly Aan Tyr Aan Tyr Lys Tyr Arg Tyr Leu Arg Hig Gly Lys Leu $\frac{435}{450}$ The Glu Arg Aep Ile Ser Aan Val Pro Phe Ser Pro Aep Gly $\frac{455}{450}$ The Tro Pro Ala Leu Aan Cys Tyr Trp Pro Leu Aan Aap $\frac{475}{450}$ Thr Pro Pro Ala Leu Aan Cys Tyr Trp Pro Leu Aan Aap $\frac{475}{450}$ The Tyr Thr Thr Thr Gly He Gly Tyr Gln Pro Tyr Arg Val $\frac{495}{450}$ Val Val Leu Ser Thr Aep Leu Ile Lye Aan Gln Cys Val Aan Phe Aan $\frac{515}{515}$ Ser Thr Aep Leu Ile Lye Aan Gln Cys Val Aan Phe Aan $\frac{515}{515}$ Ser Val Arg Aep Thr Gly Val Leu Thr Pro Ger Ser Lys Arg $\frac{516}{510}$ Ser Thr Aep Leu Ile Thr Pro Gly Thr Aan Ala Ser 565 Ser Val Arg Aep Pro Lye Thr Ser Glu Ile Lue Aap Ile Ser Pro Cys $\frac{565}{565}$ Ser Val Asa Pro Lye Thr Ser Glu Ile Law Ap Ile Ser Pro Cys $\frac{565}{565}$ Ser Val Asa Pro Lye Thr Ser Glu Ile Law Ap Ile Ser Pro Cys $\frac{565}{565}$ Ser Val Asa Pro Lye Thr Ser Glu Ile Thr Pro Gly Thr Aan Ala Ser Ser $\frac{560}{560}$ Ser Val Asa Pro Lye Thr Ser Glu Thr Aan Ala Ser Ser $\frac{560}{560}$ Ser Thr Aap Leu Thr Glo Aaa Tyr Arg Ile Tyr Ser Thr $\frac{610}{610}$ Cor Asa Prir Glu Cys Asg Ileo Thr Ile Gly Ala Glu $\frac{645}{650}$ Ser Thr Sar Tyr Glu Cys Asg Ileo Thr Ser Thr $\frac{610}{610}$ Cor Asa Prir Sar Tyr Glu Cys Asg Ileo Thr Ser Thr $\frac{610}{610}$ Sin Ann Thr Ile Ala Ile Thr Pro Ala Thr Arg Ser He Ser Glu Jleo $\frac{645}{650}$ Ser Thr Aan Thr Met Ser Leu Gly Ala Asp Ser Ser 570 Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser 710 $\frac{645}{700}$ An Aan Thr Ile Ala Ile Thr Chi Aia Iley Thr Ser Thr $\frac{645}{700}$ And Ann Thr Ile Ala Ile Thr Pro Ala Thr Arg Ser He Ser Glu Ly Ile $\frac{645}{700}$ And Ann Thr Ile Ala Ile Thr Pro Thr Aan Phe Ser Ser 1le Ala $\frac{645}{700}$ And Asp Thr Ser Tyr Glu Cys Asg Ile Cys Ang Ile Ser Ser 710 Thr Thr Chi Val Ser Het Ala Lys Thr Ser Val Asp Cys $\frac{700}{700}$ Thr Thr Met Ser Leu Gly Ala Asp Cys $\frac{700}{700}$ Thr Thr Met Ser Cys Thr Glu Cys Asg Ile Cys Thr Ser Val Asp Cys $\frac{700}{700}$ Thr Chi Cys Thr Chin	Gln	Thr	Gly	Val	Ile 405	Ala	Asp	Tyr	Asn	Ty r 410	Lys	Leu	Pro	Asp	Asp 415	Phe	
The Gly Am Tyr Am Tyr Lym Tyr Arg Tyr Leu Arg Him Gly Lym Leu 445 Arg Pro Phe Glu Arg Am Ti Es er Am Val Pro Phe Ger Pro Am Gly 450 Lym Pro Cyr Thr Pro Pro Ala Leu Am Cyr Tyr Trp Pro Leu Am Am Ag 465 Val Val Leu Ser Thr Chr Thr Chy Ile Cly Tyr Cln Pro Tyr Arg Val 400 Val Val Leu Ser Thr Am Clu Leu Am Cyr Tyr Thr Pro Leu Am Am Ag 500 Pro Lym Eur Ser Thr Am Clu Leu Am Cin Cyr Val Am Phe Am 510 Pro Lym Eur Ser Thr Am Cur Clu Val Am Clu Cyr Val Am Phe Am 550 Pro He Glu Nr Gly Thr Cly Val Leu Thr Pro Ser Ser Lys Arg 551 So Thr Pro Pro Lym Thr Ser Glu The Leu Am Thr Am Ser Ser 560 Sor Val Arg Am Pro Lym Thr Ser Glu The Law Eng Her Thr Ser 550 Ser Phe Gly Gly Val Ser Val Her Thr Pro Gly Thr Am Ald Ser Ser 560 Sor Val Arg Am Pro Lym Thr For Ala Thr Parg The Tyr Ser Thr 610 Glu Val Ala Val Leu Tyr Gln Am Val Am Cyr Thr Arg Yal E Tyr Ser Thr 610 Glu Val Ala Am Thr Ser Tyr Glu Cyr Am File Thr Ser Glu Lyr 625 Glu Val Ala Thr Ser Tyr Glu Cyr Am File Thr Cal Ja Cly Gli Gir Gro 635 Glu Val Ala T	Met	Gly	Cys	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser	
Arg Pro Phe Glu Arg Asp IIe Ser Asn Val Pro Phe Ser Pro Asp Gly 465 ro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp 465 $ro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp 475 day Tyr Gly Phe Tyr Thr Thr Thr Gly IIe Gly Tyr Gln Pro Tyr Arg Val 490 day Cys Cys Cys Thr Pro Cys Leu Leu Asn Ala Pro Ala Thr Val Cys Gly 500 Pro Lys Leu Ser Thr Asp Leu IIe Lys Asn Gin Cys Val Asn Phe Asn 530 Cys Leu Ser Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg 530 Cys Leu Thr Gly Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg 545 Ch Pro Phe Gli Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp 545 Ch Pro Phe Gli Ser Val IIe Thr Pro Gly Thr Asn Ala Ser Ser Sys 545 Ch Pro Phe Gly Ser Val IIe Thr Pro Gly Thr Asn Ala Ser Ser Sys 546 Ch Pro Phe Gli Ser Val IIe Thr Pro Gly Thr Asn Ala Ser Ser Sys 547 Ch Asp Cys Thr Ser Glu IIe Leu Asp IIe Ser Pro Cys 548 Ser Val Arg Asp Pro Lys Thr Ser Glu IIe Leu Asp IIe Ser Pro Cys 549 Ser Val Arg Asp Gln Leu Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr 610 Cys Ala Cau Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr 610 Cys Ala Cau Tyr Gln Asp Val Ser Jer Cys Dy Cys Leu IIe Gly Ala Glu 625 Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Cin Lys 665 Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys 665 Cys Ala Ser Tyr His Thr Val Ser Leu Cily Ala Asp Car Ser Tile Ala 665 Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gin Lys 666 Ch Ser Tyr His Thr Val Ser Leu Cily Ala Asp Car Ser Tile Ala 660 Ch Ma Asn Thr IIe Ala IIe Pro Thr Asn Phe Ser IIe Ser IIe Ala 660 Ch Cil Cily Asp Ser Thr Clu Cys Asp IIe Pro Thr Asn Phe Ser IIe Ser IIe Ala 660 Ch Cil Thr Ch II Ser Met Ala Lys Thr Ser Val Asp Cys 710 Tr Cil Val Met Pro Val Ser Thr Clu Cys Ala Asn Leu Leu Leu 725 Ch Thr Clu Val Met Pro Ch I Ser Thr Clu Cys Ala Asn Leu Leu Leu 726 Ch Tr Cil Val Ser Phe Cys Thr Clu Lys Tr Fie Cily Cily The Asn Phe Ser IIe Ser IIe Tr 740 Tr Cil Val Ser Phe Cys Thr Clu Lys Tyr Phe Cily Cily The Asn Phe 640 Tr Cil Cil Cil Cil Thr Clu Tyr Thr Thr Ser Cil Thr Tr $	Thr	Gly	Asn 435	Tyr	Asn	Tyr	Lys	Ty r 440	Arg	Tyr	Leu	Arg	His 445	Gly	Lys	Leu	
The first first properties of the first properties of	Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly	
Tyr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val $\frac{400}{495}$ Val Val Leu Ser Phe Glu Leu Leu Aan Ala Pro Ala Thr Val Cys Gly $\frac{500}{510}$ Pro Lyr Leu Ser Thr Aep Leu Ile Lyr Aan Cln Cys Val Aan Phe Aen $\frac{515}{520}$ Phe Aen Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lyr Arg $\frac{530}{530}$ Pro Lyr Leu Ser Thr Aep Leu Ile Lyr Aep Val Ser Aep Phe Thr Aep $\frac{545}{530}$ Ser Val Arg Aep Pro Lyr Thr Ser Glu Ile Leu Aep Ile Ser Pro Cys $\frac{565}{570}$ Ser Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Aan Ala Ser Ser $\frac{500}{590}$ Glu Val Jar Val Leu Tyr Gln Aep Val Aen Cys Thr Aep Val Ser Thr $\frac{600}{615}$ Glu Val Lau Val Leu Tyr Gln Aep Val Aen Cys Thr Aep Val Ser Thr $\frac{610}{615}$ Glu Val Jar Val Leu Tyr Gln Ale Gly Cys Leu Ile Gly Ala Gly Ile $\frac{610}{645}$ Gly Aen Aen Val Phe Gln Thr Gln Ale Gly Cys Leu Ile Gly Ala Gly Ile $\frac{610}{645}$ Gly Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys $\frac{610}{655}$ Gry a Las Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys $\frac{610}{655}$ Gry an Aen Tal Ala Tyr Thr Met Ser Leu Gly Ala Aep Ser Ser Ile Ala $\frac{675}{710}$ Fyr Ser Ana Ann Thr Ile Ala Ile Pro Thr Aen Phe Ser Ile Ser Ile Ala $\frac{675}{710}$ $\frac{675}{710$	Lys 465	Pro	Cys	Thr	Pro	Pro 470	Ala	Leu	Asn	Cys	Ty r 475	Trp	Pro	Leu	Asn	Asp 480	
Val Val Leu Ser Phe Glu Leu Law Asn Ala Pro Ala The Val Cys Gly 510Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn 515Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn 515Phe Asn Gly Leu The Gly Thr Gly Val Leu The Pro See Ser Lys Arg 530Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp 555Ser Val Arg Asp Pro Lys The Ser Glu Ile Leu Asp Ile Ser Pro Cys 566Ser Val Arg Asp Pro Lys The Ser Glu Ile Leu Asp Ile Ser Pro Cys 566Ser Phe Gly Gly Val Ser Val Ile The Pro Gly The Asn Ala Ser Ser 580Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys The Asp Val Ser Thr 600610 Val Ala Pat Leu Tyr Gln Asp Val Asn Cys The Apg Val Ser Thr 610610 Val Ala Pat Leu Tyr Gln Asp Val Asn Cys The Apg Val Ser Thr 620610 Val Ala Pat Leu Tyr Gln Asp Ser Jee Dro Ile Gly Ala Glu 630611 Val Ala Pat Fer Glu Cys Asp Ile Pro Ile Gly Ala Glu 644625626637638643644644645656657658658775659785786786786786787788 <t< td=""><td>Tyr</td><td>Gly</td><td>Phe</td><td>Tyr</td><td>Thr</td><td>Thr</td><td>Thr</td><td>Gly</td><td>Ile</td><td>Gly</td><td>Tyr</td><td>Gln</td><td>Pro</td><td>Tyr</td><td>Arg</td><td>Val</td><td></td></t<>	Tyr	Gly	Phe	Tyr	Thr	Thr	Thr	Gly	Ile	Gly	Tyr	Gln	Pro	Tyr	Arg	Val	
butbutbutbutbutbutProLysLeuSetThrAspLeuIleLysAsnClnCysValAsnPheAsnPheAsnGlyLeuThrGlyValLeuThrProSetSetLysArgPheClnProPheGlnGlnPheGlyArgAspProGlySetAspPheThrAspSetValAspProClysThrSetGluTheAspProCysSetValAspProDisThrSetGluThrAspProCysSetValAspProDisThrSetGluThrAspProCysSetValAspProCysThrAspTheAspProCysGluValAspProDisThrAspValAspProCysGluValAspProDisThrAspValAspThrAspProGluValAspProDisThrAspCysThrAspProCysGluValAspProDisThrAspCysThrAspDisCysGluValAspThrFoDisThrAspFoDisAspCysGlu </td <td>Val</td> <td>Val</td> <td>Leu</td> <td>Ser</td> <td>485 Phe</td> <td>Glu</td> <td>Leu</td> <td>Leu</td> <td>Asn</td> <td>490 Ala</td> <td>Pro</td> <td>Ala</td> <td>Thr</td> <td>Val</td> <td>чээ Сув</td> <td>Gly</td> <td></td>	Val	Val	Leu	Ser	485 Phe	Glu	Leu	Leu	Asn	490 Ala	Pro	Ala	Thr	Val	чээ Сув	Gly	
515 520 525 Phe Aan Gly Leu Th Gly Thr Gly Val Leu Th Pro Ser Ser Lys Arg 545 Phe Gln Pro Phe Gln Gln Phe Gly Arg Aap Val Ser Aap The Ser Ser Ser 545 Ser Val Arg Aap Pro Lys Thr Ser Glu The Leu Aap The Ser Pro Cys Ser Val Arg Aap Gly Leu Tyr Gln Aap Val Aan Cys Thr Aan Ala Ser Ser 590 Ser Val Arg Aap Gln Leu Tyr Gln Aap Val Aan Cys Thr Aap Val Ser Thr 610 Val Aap Gln Leu Tyr Gln Aap Val Aan Cys Thr Aap Val Ser Thr 610 Val Aap Gln Leu Tyr Gln Aap Val Aan Cys Thr Aap Val Ser Thr 620 Ser Ser Ser Ser 610 He Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Gly 621 Aap Thr Ser Tyr Glu Cys Aap The Ser Ser Thr Ser Gln Lys 625 Ser Thr Ser Glu Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys 625 Ser	Pro	Lys	Leu	500 Ser	Thr	Asp	Leu	Ile	505 Lys	Asn	Gln	Cys	Val	510 Asn	Phe	Asn	
530535540Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Yal Ser Asp Phe Thr Asp 555Ser Val Arg Asp Pro 580Ser Val Arg Asp Pro 580Ser Val Arg Asp Pro 580Glu Val Ala Val Leu Tyr Gln Asp 610He Glu Val Asp Clu Val Ser Val IIe 610Thr Pro Ala Trp Arg IIe 620Glu Val Ala Val Leu Tyr Gln Asp 610Ha Fib Sala Asp Gln Leu Thr Pro Ala Trp Arg IIe 620Gly Asn Asn Val Phe 640Gly Asn Asn Thr Val Ser Leu 640Fis 640	Phe	Asn	515 Gly	Leu	Thr	Gly	Thr	520 Gly	Val	Leu	Thr	Pro	525 Ser	Ser	Lys	Arg	
545 550 550 555 555 560 Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys 565 575 585 785 595 595 595 595 595 595 595 595 595 5	Phe	530 Gln	Pro	Phe	Gln	Gln	535 Phe	Glv	Ara	Asp	Val	540 Ser	Asp	Phe	Thr	Asp	
Ser Field in the set of the field of the fie	545 Ser	Val	Ara	Den	Dro	550	Thr	Ser	J	TIO	555	Aer	P	Ser	Dro	560 CVC	
<pre>ser pre Gry Gry Val Ser Val He Inr Pro Gry Thr Asn Ala Ser Ser 580 Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr 600 Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr 610 Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu 635 Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu 640 His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile 640 Gry Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys 660 Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala 675 Gry Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile 690 Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys 710 Asn Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu 730 Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile 740 Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys 765 Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770 For Chn Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile</pre>	Det	vai	ALY al	чер	565	- тув	- 11E	Jer.	GTU E	570	Jeu	rsh	, e	Det.	575	Сув	
Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr 600Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr 610Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu 630G25Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile 645Gy Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys 660Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala 675Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Ser Ile 700Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys 735Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile 740Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys 765Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile	Ser	Phe	GIY	G1 y 580	Val	Ser	Val	lle	Thr 585	Pro	GIY	Thr	Asn	A1a 590	Ser	Ser	
Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr $\begin{array}{c} 610\\ 610\end{array}$ Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu $\begin{array}{c} 625\\ 625\end{array}$ Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Gly Ile $\begin{array}{c} 640\\ 640\end{array}$ His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile $\begin{array}{c} 655\\ 655\end{array}$ Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys $\begin{array}{c} 666\\ 660\end{array}$ Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala $\begin{array}{c} 670\\ 670\end{array}$ Cr Ba Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Ser Ile $\begin{array}{c} 690\end{array}$ Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Ser Ile $\begin{array}{c} 705\end{array}$ Thr Glu Val Met Pro Val Ser Met Ala Ley Thr Ser Val Asp Cys $\begin{array}{c} 710\\ 710\end{array}$ Thr Glu Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile $\begin{array}{c} 725\end{array}$ Cys Ala Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile $\begin{array}{c} 750\end{array}$ Chi Val Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile $\begin{array}{c} 750\end{array}$ Chi Val Ser Phe Cys Thr Chi Leu Lys Tyr Phe Cly Gly Phe Asn Phe $\begin{array}{c} 770\end{array}$ Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile	Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	Суз	Thr	Asp 605	Val	Ser	Thr	
Gly Asn Asn Val PheGln Thr Gln AlaGly CysLeuIleGly AlaGlu625AspThr SerTyrGlu CysAspIleGlyAlaGlyIleHisValAspThrSerTyrGlu CysAspIleGlyAlaGlyIleCysAlaSerTyrHisThr ValSerLeuLeuArgSerThrSerGlnLysSerIleValAlaTyrThr MetSerLeuGlyAlaAspSerIleAlaTyrSerAsnAsnThrIleAlaIleProThrAspSerSerIleAlaTyrSerAsnAsnThrIleAlaIleProThrSerSerSerIleAlaTyrSerAsnAsnThrIleAlaIleProThrAsnPheSerIleAspTyrSerAsnAsnThrIleAlaIleProThrAsnPheSerIleAspTroThrTyrSerAsnAsnThrIleAspSerThrSerValAspTro	Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr	
 His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala Gys Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys 715 Asn Met Tyr Ile Cys Gly Asp Ser Thr Glu Leu Asn Arg Ala Leu Ser Gly Ile Gln Met 755 Gln Asp Arg Asn Thr Ice Ala Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Fle Asn Phe Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile 	Gly 625	Asn	Asn	Val	Phe	Gln 630	Thr	Gln	Ala	Gly	С у в 635	Leu	Ile	Gly	Ala	Glu 640	
CysAlaSerTyrHisThrValSerLeuArgSerThrSerGlnLysSerIleValAlaTyrThrMetSerLeuGlyAlaAspSerSerIleAlaTyrSerAsnAsnThrIleAlaIleProThrAsnPheSerIleSerIleAlaThrSerAsnAsnThrIleAlaIleProThrAsnPheSerIleSerIleSerIleThrGluValMetProValSerMetAspSerThrSerValAspCys705ThrGluValMetProValSerThrGluLysThrSerValAspCys705ThrGluValMetProValSerThrGluSerValAspCysThrSerCysThr705ThrGluValMetProThrGluSerThrSerSerValAspCysThrSerSerThrSerSerThrSer <td< td=""><td>His</td><td>Val</td><td>Asp</td><td>Thr</td><td>Ser 645</td><td>Tyr</td><td>Glu</td><td>Сув</td><td>Asp</td><td>Ile 650</td><td>Pro</td><td>Ile</td><td>Gly</td><td>Ala</td><td>Gly 655</td><td>Ile</td><td></td></td<>	His	Val	Asp	Thr	Ser 645	Tyr	Glu	Сув	Asp	Ile 650	Pro	Ile	Gly	Ala	Gly 655	Ile	
SerIleValAlaTyrThrMetSerLeuGlyAlaAspSerSerIleAlaTyrSerAsnAsnThrIleAlaIleProThrAsnPhoSerIleSerIleTyrGenAsnAsnThrIleAlaIleProThrAsnPhoSerIleSerIleThrGluValMetProValSerMetAlaLysThrSerValAspCys705ThrGluValMetProValSerThrGluCysAlaAspCys705ThrGluSerGluAspSerThrGluCysAlaAspCys705ThrGluSerThrGluCysAlaAspLeuFro705ThrGlySerThrGluCysAlaAspLeuFro705ThrGlySerThrGluCysAlaAspLeuFro705ThrGlySerThrGluCysAlaAspLeuFro705ThrGlySerThrGluValPhoAfcGluValLys706ThrGluSerThrGluValPhoAfcGluValLys706ThrLy	Cys	Ala	Ser	Ty r 660	His	Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys	
TyrSerAsnAsnThrIleAlaIleProThrAsnPhoSerIleSerIleThrGluValMetProValSerMetAlaLysThrSerValAspCys705ThrGluValMetProValSerMetAlaLysThrSerValAspCysAsnMetTyrIleCysGlyAspSerThrGluCysAlaAspLeuFooGlnTyrGlySerPhoCysThrGluLusSerGluValPhoAlaAlaGluSerAspAspAspAspAspAspAspAspAlaAlaGluAspAspAspAspAspAspAspAspGluMetTyrLysThrProThrAspGluValPhoAlaAlaGluAspAspAspGluValPhoAspThr770TyrLysThrProThrAspTyrPhoAspPho6lnMetTyrLysThrProThrLysTyrPhoAspPho770TyrLysThrProThrLysTyrPhoAspPhoPho770TyrLysTyrProEu	Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala	
ThrGluValMetProValSerMetAlaLysThrSerValAspCysAsnMetTyrIleCysGlyAspSerThrGluCysAlaAsnLeuLeuGlnTyrGlySerPheCysThrGluCysAlaAsnAsnLeuLeuAlaAlaGluSerPheCysThrGluLeuAsnArgAlaLeuSerGlyIleAlaAlaGluGluAspArgGluValPheAlaGluValLysGluMetTyrLysThrProThrArgGluValPheAlaGluValLysGluMetTyrLysThrProThrArgGluValPheAlaGluValLysGluMetTyrLysThrProThrLysTyrPheGlyGlyPheAsnPheGluMetTyrLysThrProThrLysTyrPheGlyGlyPheAsnPheGluMetTyrLysTyrProThrLysArgSerPheIleSerGluIleLeuProAspProThrLysArgSerPheIleSerGluIle <td< td=""><td>Tyr</td><td>Ser 690</td><td>Asn</td><td>Asn</td><td>Thr</td><td>Ile</td><td>Ala 695</td><td>Ile</td><td>Pro</td><td>Thr</td><td>Asn</td><td>Phe 700</td><td>Ser</td><td>Ile</td><td>Ser</td><td>Ile</td><td></td></td<>	Tyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695	Ile	Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile	
Asn MetTyrIleCysGlyAspSerThrGluCysAlaAsnLeuLeuTasGlnTyrGlySerPheCysThrGlnLeuAsnArgAlaLeuSerGlyIleAlaAlaGluGlnAspArgAsnThrArgAlaLeuSerGlyIleAlaAlaGluGlnAspArgAsnThrArgGluValPheAlaGlnValLysGlnMetTyrLysThrProThrLeuLysTyrPheGlyGlyPheAsnPheSerGlnIleLeuProAspProLeuLysProThrLysArgSerPheIle	Thr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	L y s 715	Thr	Ser	Val	Asp	Cys 720	
Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys 755 Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770 Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile	Asn	Met	Tyr	Ile	Cys 725	Gly	Asp	Ser	Thr	Glu 730	Cys	Ala	Asn	Leu	Leu 735	Leu	
Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys 755 Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770 775 Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile	Gln	Tyr	Gly	Ser	Phe	Cys	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser	Gly	Ile	
Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770 775 780 Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile	Ala	Ala	Glu	Gln	Asp	Arg	Asn	Thr	Arg	Glu	Val	Phe	Ala	Gln	Val	Lys	
770 775 780 Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile	Gln	Met	755 Tyr	Lys	Thr	Pro	Thr	760 Leu	Lys	Tyr	Phe	Gly	765 Gly	Phe	Asn	Phe	
	Ser	770 Gln	Ile	Leu	Pro	Asp	775 Pro	Leu	Lys	Pro	Thr	780 Lys	Arq	Ser	Phe	Ile	

-continued

_												-	con	τın	uea	
78	85					790					795					800
G	lu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
LJ	ув	Gln	Tyr	Gly 820	Glu	Сув	Leu	Gly	A sp 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
СJ	уs	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
A	sp	Asp 850	Met	Ile	Ala	Ala	Ty r 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Тł 8 б	hr 65	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
A.	la	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Vé	al	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
I	le	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Ly	уs	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Va 94	al 45	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
A۵	sp	Ile	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Asp
Aı	rg	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
G	ln	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000	Arg D	Ala	Ser	Ala	Asn 1005	Leu 5	Ala	Ala
Тł	hr	L y s 101(Met	Ser	Glu	Cys	Val 1015	Leu 5	Gly	Gln	Ser	L y s 102	Arg 0	Val	Asp	Phe
Су 1 (у в 025	Gly	Lys	Gly	Tyr	His 103	Leu 0	Met	Ser	Phe	Pro 103	Gln 5	Ala	Ala	Pro	His 1040
G	ly	Val	Val	Phe	Leu 104!	His 5	Val	Thr	Tyr	Val 1050	Pro)	Ser	Gln	Glu	Arg 105!	Asn 5
Pł	he	Thr	Thr	Ala 106	Pro 0	Ala	Ile	Суз	His 1065	Glu 5	Gly	Lys	Ala	Ty r 107	Phe 0	Pro
Aı	rg	Glu	Gly 1075	Val	Phe	Val	Phe	A sn 1080	Gly D	Thr	Ser	Trp	Phe 108	Ile 5	Thr	Gln
Aı	rg	Asn 109(Phe)	Phe	Ser	Pro	Gln 1095	Ile 5	Ile	Thr	Thr	Asp 110	Asn 0	Thr	Phe	Val
Se 11	er 105	Gly	Asn	Cys	Asp	Val 111	Val 0	Ile	Gly	Ile	Ile 111	Asn 5	Asn	Thr	Val	Ty r 1120
A	sp	Pro	Leu	Gln	Pro 112	Glu 5	Leu	Asp	Ser	Phe 1130	Lys	Glu	Glu	Leu	Asp 113	Lys
ту	yr	Phe	Lys	Asn 114	His O	Thr	Ser	Pro	Asp 1145	Val 5	Asp	Phe	Gly	Asp 115	Ile 0	Ser
G	ly	Ile	Asn 1155	Ala	Ser	Val	Val	Asn 116(Ile D	Gln	Lys	Glu	Ile 1165	Asp 5	Arg	Leu
A	sn	Glu 117(Val	Ala	Lys	Asn	Leu 1175	Asn 5	Glu	Ser	Leu	Ile 118	Asp 0	Leu	Gln	Glu
Le 1 -	eu 185	Gly	Lys	Tyr	Glu	Gln 119	Tyr 0	Ile	Lys	Trp	Pro 119	Trp	Tyr	Val	Trp	Leu 1200

Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu 1205 1210 1215 Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys 1220 1225 1230 Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1235 1240 1245 Gly Val Lys Leu His Tyr Thr 1250 1255 <210> SEQ ID NO 46 <211> LENGTH: 3768 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus TW5 <400> SEQUENCE: 46 atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga ccggtgcacc 60 acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat gaggggggtt 120 tactatcctg atgaaatttt tagatcagac actctttatt taactcagga tttatttctt 180 ccattttatt ctaatgttac agggtttcat actattaatc atacgtttgg caaccctgtc 240 atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt tgtccgtggt 300 tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat taacaattct 360 actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaacccttt ctttgctgtt 420 480 tctaaaccca tgggtacaca gacacatact atgatattcg ataatgcatt taattgcact ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg taattttaaa 540 cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta taagggctat 600 caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa acctatttt 660 aagttgcctc ttggtattaa cattacaaat tttagagcca ttcttacagc cttttcacct 720 gctcaagaca tttggggcac gtcagctgca gcctattttg ttggctattt aaagccaact 780 acatttatgc tcaagtatga tgaaaatggt acaatcacag atgctgttga ttgttctcaa 840 aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa aggaatttac 900 cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc taatattaca 960 aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt ctatgcatgg 1020 gagagaaaaa aaatttctaa ttgtgttgct gattactctg tgctctacaa ctcaacattt 1080 ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct ttgcttctcc 1140 aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat agcgccagga 1200 caaactggtg ttattgctga ttataattat aaattgccag atgatttcat gggttgtgtc 1260 cttgcttgga atactaggaa cattgatgct acttcaactg gtaattataa ttataaatat 1320 aggtatetta gacatggcaa gettaggeee tttgagagag acatatetaa tgtgeettte 1380 tcccctgatg gcaaaccttg caccccacct gctcttaatt gttattggcc attaaatgat 1440 tatggttttt acaccactac tggcattggc taccaacctt acagagttgt agtactttct 1500 tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac tgaccttatt 1560 aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt gttaactcct 1620 tetteaaaga gattteaace attteaacaa tttggeegtg atgtttetga ttteaetgat 1680

tccgttcgag	atcctaaaac	atctgaaata	ttagacattt	caccttgctc	ttttgggggt	1740
gtaagtgtaa	ttacacctgg	aacaaatgct	tcatctgaag	ttgctgttct	atatcaagat	1800
gttaactgca	ctgatgtttc	tacagcaatt	catgcagatc	aactcacacc	agcttggcgc	1860
atatattcta	ctggaaacaa	tgtattccag	actcaagcag	gctgtcttat	aggagctgag	1920
catgtcgaca	cttcttatga	gtgcgacatt	cctattggag	ctggcatttg	tgctagttac	1980
catacagttt	ctttattacg	tagtactagc	caaaaatcta	ttgtggctta	tactatgtct	2040
ttaggtgctg	atagttcaat	tgcttactct	aataacacca	ttgctatacc	tactaacttt	2100
tcaattagca	ttactacaga	agtaatgcct	gtttctatgg	ctaaaacctc	cgtagattgt	2160
aatatgtaca	tctgcggaga	ttctactgaa	tgtgctaatt	tgcttctcca	atatggtagc	2220
ttttgcacac	aactaaatcg	tgcactctca	ggtattgctg	ctgaacagga	tcgcaacaca	2280
cgtgaagtgt	tcgctcaagt	caaacaaatg	tacaaaaccc	caactttgaa	atattttggt	2340
ggttttaatt	tttcacaaat	attacctgac	cctctaaagc	caactaagag	gtcttttatt	2400
gaggacttgc	tctttaataa	ggtgacactc	gctgatgctg	gcttcatgaa	gcaatatggc	2460
gaatgcctag	gtgatattaa	tgctagagat	ctcatttgtg	cgcagaagtt	caatggactt	2520
acagtgttgc	cacctctgct	cactgatgat	atgattgctg	cctacactgc	tgctctagtt	2580
agtggtactg	ccactgctgg	atggacattt	ggtgctggcg	ctgctcttca	aatacctttt	2640
gctatgcaaa	tggcatatag	gttcaatggc	attggagtta	cccaaaatgt	tctctatgag	2700
aaccaaaaac	aaatcgccaa	ccaatttaac	aaggcgatta	gtcaaattca	agaatcactt	2760
acaacaacat	caactgcatt	gggcaagctg	caagacgttg	ttaaccagaa	tgctcaagca	2820
ttaaacacac	ttgttaaaca	acttagctct	aattttggtg	caatttcaag	tgtgctaaat	2880
gatatccttt	cgcgacttga	taaagtcgag	gcggaggtac	aaattgacag	gttaattaca	2940
ggcagacttc	aaagccttca	aacctatgta	acacaacaac	taatcagggc	tgctgaaatc	3000
agggcttctg	ctaatcttgc	tgctactaaa	atgtctgagt	gtgttcttgg	acaatcaaaa	3060
agagttgact	tttgtggaaa	gggctaccac	cttatgtcct	tcccacaagc	agccccgcat	3120
ggtgttgtct	tcctacatgt	cacgtatgtg	ccatcccagg	agaggaactt	caccacagcg	3180
ccagcaattt	gtcatgaagg	caaagcatac	ttccctcgtg	aaggtgtttt	tgtgtttaat	3240
ggcacttctt	ggtttattac	acagaggaac	ttcttttctc	cacaaataat	tactacagac	3300
aatacatttg	tctcaggaaa	ttgtgatgtc	gttattggca	tcattaacaa	cacagtttat	3360
gatectetge	aacctgagct	tgactcattc	aaagaagagc	tggacaagta	cttcaaaaat	3420
catacatcac	cagatgttga	tcttggcgac	atttcaggca	ttaacgcttc	tgtcgtcaac	3480
attcaaaaag	aaattgaccg	cctcaatgag	gtcgctaaaa	atttaaatga	atcactcatt	3540
gaccttcaag	aattgggaaa	atatgagcaa	tatattaaat	ggccttggta	tgtttggctc	3600
ggcttcattg	ctggactaat	tgccatcgtc	atggttacaa	tcttgctttg	ttgcatgact	3660
agttgttgca	gttgcctcaa	gggtgcatgc	tcttgtggtt	cttgctgcaa	gtttgatgag	3720
gatgactctg	agccagttct	caagggtgtc	aaattacatt	acacataa		3768

<210> SEQ ID NO 47 <211> LENGTH: 1255 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus TW5

<400)> SE	QUEN	ICE :	47											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Cys	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	Ala	Pro	Asn	Tyr 30	Thr	Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg
Ser	Авр 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Gly	Asn	Pro	Val 80
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	L y s 110	Ser	Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Cys
Asn	Phe 130	Glu	Leu	Суз	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met
Gly 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Сув	Thr 160
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Leu 170	Asp	Val	Ser	Glu	L y s 175	Ser
Gly	Asn	Phe	L y s 180	His	Leu	Arg	Glu	Phe 185	Val	Phe	Lys	Asn	Lys 190	Asp	Gly
Phe	Leu	Ty r 195	Val	Tyr	Lys	Gly	Ty r 200	Gln	Pro	Ile	Asp	Val 205	Val	Arg	Asp
Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Lys	Leu	Pro	Leu
Gly 225	Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240
Ala	Gln	Asp	Ile	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	Lys 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile
Thr	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Сув
Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Ty r 300	Gln	Thr	Ser	Asn
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Asn	Leu	Cys	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser
Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Lys	Ile 345	Ser	Asn	Cys	Val	Ala 350	Asp	Tyr
Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	Lys 365	Cys	Tyr	Gly
Val	Ser 370	Ala	Thr	Lys	Leu	Asn 375	Asp	Leu	Cys	Phe	Ser 380	Asn	Val	Tyr	Ala
Asp	Ser	Phe	Val	Val	Lys	Gly	Asp	Asp	Val	Arg	Gln	Ile	Ala	Pro	Gly

-continued

-																
3	385					390					395					400
Ģ	ln	Thr	Gly	Val	Ile 405	Ala	Asp	Tyr	Asn	Ty r 410	Lys	Leu	Pro	Asp	Asp 415	Phe
Μ	let	Gly	Cys	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser
J	[hr	Gly	Asn 435	Tyr	Asn	Tyr	Lys	Ty r 440	Arg	Tyr	Leu	Arg	His 445	Gly	Lys	Leu
F	Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
I 4	ys 165	Pro	Cys	Thr	Pro	Pro 470	Ala	Leu	Asn	Cys	Ty r 475	Trp	Pro	Leu	Asn	Asp 480
T	「yr	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
V	7al	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Cys	Gly
E	?ro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Cys	Val 525	Asn	Phe	Asn
E	?he	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
E 5	2he 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	Asp 560
5	Ser	Val	Arg	Asp	Pro 565	Lys	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Cys
5	Ser	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Ģ	Ju	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	Cys	Thr	Asp 605	Val	Ser	Thr
P	Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Ć	51y	Asn	Asn	Val	Phe	Gln 630	Thr	Gln	Ala	Gly	С у в 635	Leu	Ile	Gly	Ala	Glu 640
F	lis	Val	Asp	Thr	Ser 645	Tyr	Glu	Cys	Asp	Ile 650	Pro	Ile	Gly	Ala	Gly 655	Ile
c	Cys	Ala	Ser	Ty r 660	His	Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
5	Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala
T	ſyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695	Ile	Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile
ר 7	[hr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	L y s 715	Thr	Ser	Val	Asp	Cys 720
P	Asn	Met	Tyr	Ile	Cys 725	Gly	Asp	Ser	Thr	Glu 730	Cys	Ala	Asn	Leu	Leu 735	Leu
Ģ	Jn	Tyr	Gly	Ser 740	Phe	Cys	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
I	Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Ala 765	Gln	Val	Lys
Ģ	ln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Tyr	Phe	Gly 780	Gly	Phe	Asn	Phe
5	5er 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	Lys	Arg	Ser	Phe	Ile 800

Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
Lys	Gln	Tyr	Gly 820	Glu	Cys	Leu	Gly	As p 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
Cys	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Ty r 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
Ile	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Lys	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Val 945	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
Asp	Ile	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Asp
Arg	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
Gln	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000	Arg)	Ala	Ser	Ala	Asn 1005	Leu	Ala	Ala
Thr	L y s 101(Met)	Ser	Glu	Суз	Val 1015	Leu 5	Gly	Gln	Ser	L y s 1020	Arg)	Val	Asp	Phe
С у в 1025	Gly	Lys	Gly	Tyr	His 1030	Leu)	Met	Ser	Phe	Pro 1035	Gln 5	Ala	Ala	Pro	His 1040
Gly	Val	Val	Phe	Leu 1045	His 5	Val	Thr	Tyr	Val 1050	Pro)	Ser	Gln	Glu	Arg 1055	Asn
Phe	Thr	Thr	Ala 1060	Pro)	Ala	Ile	Сув	His 1065	Glu	Gly	Lys	Ala	Ty r 1070	Phe)	Pro
Arg	Glu	Gly 1075	Val 5	Phe	Val	Phe	Asn 1080	Gly	Thr	Ser	Trp	Phe 1085	Ile	Thr	Gln
Arg	Asn 109(Phe)	Phe	Ser	Pro	Gln 1095	Ile 5	Ile	Thr	Thr	Asp 110(Asn)	Thr	Phe	Val
Ser 1105	Gly	Asn	Сув	Asp	Val 111(Val)	Ile	Gly	Ile	Ile 1115	Asn 5	Asn	Thr	Val	Ty r 1120
Asp	Pro	Leu	Gln	Pro 1125	Glu 5	Leu	Asp	Ser	Phe 113(Lys)	Glu	Glu	Leu	Asp 1135	Lys 5
Tyr	Phe	Lys	Asn 114(His)	Thr	Ser	Pro	Asp 1145	Val	Asp	Leu	Gly	Asp 115(Ile)	Ser
Gly	Ile	Asn 1155	Ala 5	Ser	Val	Val	Asn 116(Ile)	Gln	Lys	Glu	Ile 1165	Asp	Arg	Leu
Asn	Glu 117(Val)	Ala	Lys	Asn	Leu 1175	Asn 5	Glu	Ser	Leu	Ile 118(Asp)	Leu	Gln	Glu
Leu 1185	Gly	Lys	Tyr	Glu	Gln 1190	Tyr	Ile	Lys	Trp	Pro 1195	Trp 5	Tyr	Val	Trp	Leu 1200

Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu 1205 1210 1215 Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys 1220 1225 1230 Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1235 1240 1245 Gly Val Lys Leu His Tyr Thr 1250 1255 <210> SEQ ID NO 48 <211> LENGTH: 3768 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus GD03T0013 <400> SEQUENCE: 48 atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga ccggtgcacc 60 acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat gaggggggtt 120 tactatcctg atgaaatttt tagatcagac actctttatt taactcagga tttatttctt 180 ccattttatt ctaatgttac agggtttcat actattaatc atacgtttga cgaccctgtc 240 atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt tgtccgtggt 300 tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat taacaattct 360 actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaacccttt ctttgttgtt 420 tctaaaccca tqqqtacacq gacacatact atgatattcg ataatgcatt taattqcact 480 ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg taattttaaa 540 cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta taagggctat 600 caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa acctatttt 660 720 aagttqcctc ttqqtattaa cattacaaat tttaqaqcca ttcttacaqc cttttcacct gctcaagaca cttggggcac gtcagctgca gcctattttg ttggctattt aaagccaact 780 acatttatgc tcaagtatga tgaaaatggt acaatcacag atgctgttga ttgttctcaa 840 aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa aggaatttac 900 cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc taatattaca 960 aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt ctatgcatgg 1020 gagaggaaaa gaatttetaa ttgtgttget gattaetetg tgetetaeaa eteaaeatet 1080 ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct ttgcttctcc 1140 aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat agcgccagga 1200 caaactggtg ttattgctga ttataattat aaattgccag atgatttcat gggttgtgtc 1260 cttgcttgga atactaggaa cattgatgct acttcaactg gtaattataa ttataaatat 1320 aggtatetta gacatggcaa gettaggeee tttgagagag acatatetaa tgtgeettte 1380 tctcctgatg gcaaaccttg caccccacct gctcctaatt gttattggcc attaaatggt 1440 tatggttttt acaccactag tggcattggc taccaacctt acagagttgt agtactttct 1500 tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac tgaccttatt 1560 aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt gttaactcct 1620 tcttcaaaga gatttcaacc atttcaacaa tttggccgtg atgtttctga tttcactgat 1680

-continued	
tccgttcgag atcctaaaac atctgaaata ttagacattt caccttgctc ttttgggggt	1740
gtaagtgtaa ttacacctgg aacaaatgct tcatctgaag ttgctgttct atatcaagat	1800
gttaactgca ctgatgtttc tacattaatt catgcagaac aactcacacc agcttggcgc	1860
atatattcta ctggaaacaa tgtattccag actcaagcag gctgtcttat aggagctgag	1920
catgtcgaca cttcttatga gtgcgacatt cctattggag ctggcatttg tgctagttac	1980
catacagttt cttcattacg tagtactagc caaaaatcta ttgtggctta tactatgtct	2040
ttaggtgctg atagttcaat tgcttactct aataacacca ttgctatacc tactaacttt	2100
tcaattagca ttactacaga agtaatgcct gtttctatgg ctaaaacctc cgtagattgt	2160
aatatgtaca tctgcggaga ttctactgaa tgtgctaatt tgcttctcca atatggtagc	2220
ttttgcagac aactaaatcg tgcactctca ggtattgctg ctgaacagga tcgcaacaca	2280
cgtgaagtgt tcgttcaagt caaacaaatg tacaaaaccc caactttgaa agattttggt	2340
ggttttaatt tttcacaaat attacctgac cctctaaagc caactaagag gtcttttatt	2400
gaggacttgc tctttaataa ggtgacactc gctgatgctg gcttcatgaa gcaatatggc	2460
gaatgcctag gtgatattaa tgctagagat ctcatttgtg cgcagaagtt caatggactt	2520
acagtgttgc cacctctgct cactgatgat atgattgctg cctacactgc tgctctagtt	2580
agtggtactg ccactgctgg atggacattt ggtgctggcg ctgctcttca aatacctttt	2640
gctatgcaaa tggcatatag gttcaatggc attggagtta cccaaaatgt tctctatgag	2700
aaccaaaaac aaatcgccaa ccaatttaac aaggcgatta gtcaaattca agaatcactt	2760
acaacaacat caactgcatt gggcaagctg caagacgttg ttaaccagaa tgctcaagca	2820
ttaaacacac ttgttaaaca acttagctct aattttggtg caatttcaag tgtgctaaat	2880
gatatccttt cgcgacttga taaagtcgag gcggaggtac aaattgacag gttaattaca	2940
ggcagacttc aaagccttca aacctatgta acacaacaac taatcagggc tgctgaaatc	3000
agggcttctg ctaatcttgc tgctactaaa atgtctgagt gtgttcttgg acaatcaaaa	3060
agagttgact tttgcggaaa gggctaccac cttatgtcct tcccacaagc agccccgcat	3120
ggtgttgtct tcctacatgt cacgtatgtg ccatcccagg agaggaactt caccacagcg	3180
ccagcaattt gtcatgaagg caaagcatac ttccctcgtg aaggtgtttt tgtgtttaat	3240
ggcacttett ggtttattae acagaggaae ttetttete cacaaataat taetacagae	3300
aatacatttg tctcaggaaa ttgtgatgtc gttattggca tcattaacaa cacagtttat	3360
gatcetetge aacetgaget tgacteatte aaagaagage tggacaagta etteaaaaat	3420
catacatcac cagatgttga tcttggcgac atttcaggca ttaacgcttc tgtcgtcaac	3480
attcaagaag aaattgaccg cctcaatgag gtcgctaaaa atttaaatga atcactcatc	3540
gaccttcaag aattgggaaa atatgagcaa tatattaaat ggccttggta tgtttggctc	3600
ggcttcattg ctggactaat tgccatcgtc atggttacaa tcttgctttg ttgcatgact	3660
agttgttgca gttgcctcaa gggtgcatgc tcttgtggtt cttgctgcaa gtttgatgag	3720
gatgactctg agccagttct caagggtgtc aaattacatt acacataa	3768

<210> SEQ ID NO 49 <211> LENGTH: 1255 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus GD03T0013

<400)> SE	QUEN	ICE :	49											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Cys	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	Ala	Pro	Asn	Tyr 30	Thr	Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg
Ser	Asp 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Asp	Asp	Pro	Val 80
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	L y s 110	Ser	Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Суз
Asn	Phe 130	Glu	Leu	Cys	Asp	Asn 135	Pro	Phe	Phe	Val	Val 140	Ser	Lys	Pro	Met
Gly 145	Thr	Arg	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Cys	Thr 160
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Leu 170	Asp	Val	Ser	Glu	L y s 175	Ser
Gly	Asn	Phe	L y s 180	His	Leu	Arg	Glu	Phe 185	Val	Phe	Lys	Asn	L y s 190	Asp	Gly
Phe	Leu	Ty r 195	Val	Tyr	Lys	Gly	Ty r 200	Gln	Pro	Ile	Asp	Val 205	Val	Arg	Asp
Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Lys	Leu	Pro	Leu
Gly 225	Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240
Ala	Gln	Asp	Thr	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	L y s 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile
Thr	Asp	Ala 275	Val	Asp	Суз	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Суз
Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Ty r 300	Gln	Thr	Ser	Asn
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Asn	Leu	Cys	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser
Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Arg	Ile 345	Ser	Asn	Сув	Val	Ala 350	Asp	Tyr
Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Ser 360	Phe	Ser	Thr	Phe	L y s 365	Cys	Tyr	Gly
Val	Ser 370	Ala	Thr	Lys	Leu	Asn 375	Asp	Leu	Cys	Phe	Ser 380	Asn	Val	Tyr	Ala
Asp 385	Ser	Phe	Val	Val	L y s 390	Gly	Asp	Asp	Val	Arg 395	Gln	Ile	Ala	Pro	Gly 400

-continued

Gln	Thr	Gly	Val	Ile 405	Ala	Asp	Tyr	Asn	Tyr 410	Lys	Leu	Pro	Asp	Asp 415	Phe
Met	Gly	Cys	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser
Thr	Gly	Asn 435	Tyr	Asn	Tyr	Lys	Ty r 440	Arg	Tyr	Leu	Arg	His 445	Gly	Lys	Leu
Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
L y s 465	Pro	Суз	Thr	Pro	Pro 470	Ala	Pro	Asn	Cys	Ty r 475	Trp	Pro	Leu	Asn	Gl y 480
Tyr	Gly	Phe	Tyr	Thr 485	Thr	Ser	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Val	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Cys	Gly
Pro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Cys	Val 525	Asn	Phe	Asn
Phe	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
Phe 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	Asp 560
Ser	Val	Arg	Asp	Pro 565	Lys	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Суз
Ser	Phe	Gly	Gl y 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	Cys	Thr	Asp 605	Val	Ser	Thr
Leu	Ile 610	His	Ala	Glu	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Gly 625	Asn	Asn	Val	Phe	Gln 630	Thr	Gln	Ala	Gly	C y s 635	Leu	Ile	Gly	Ala	Glu 640
His	Val	Asp	Thr	Ser 645	Tyr	Glu	Cys	Asp	Ile 650	Pro	Ile	Gly	Ala	Gly 655	Ile
Сув	Ala	Ser	Ty r 660	His	Thr	Val	Ser	Ser 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680	Leu	Gly	Ala	Asp	Ser 685	Ser	Ile	Ala
Tyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695	Ile	Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile
Thr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	L y s 715	Thr	Ser	Val	Asp	C y s 720
Asn	Met	Tyr	Ile	C y s 725	Gly	Asp	Ser	Thr	Glu 730	Cys	Ala	Asn	Leu	Leu 735	Leu
Gln	Tyr	Gly	Ser 740	Phe	Cys	Arg	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Val 765	Gln	Val	Lys
Gln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Asp	Phe	Gly 780	Gly	Phe	Asn	Phe
Ser 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	Lys	Arg	Ser	Phe	Ile 800

-C	0	n	t	1	n	u	e	d

												COII		ueu	
Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
Lys	Gln	Tyr	Gly 820	Glu	Cys	Leu	Gly	A sp 825	Ile	Asn	Ala	Arg	A sp 830	Leu	Ile
Cys	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Ty r 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
Ile	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Lys	Leu	Gln	Asp	Val	Val	Asn	Gln	Asn	Ala	Gln	Ala	Leu	Asn	Thr	Leu
Val	Lys	Gln	Leu	Ser	Ser	Asn	Phe	Gly	Ala	Ile	Ser	Ser	Val	Leu	Asn
945 Asp	Ile	Leu	Ser	Arg	950 Leu	Asp	Lys	Val	Glu	y55 Ala	Glu	Val	Gln	Ile	ую0 Азр
Arg	Leu	Ile	Thr	965 Gly	Arg	Leu	Gln	Ser	970 Leu	Gln	Thr	Tyr	Val	975 Thr	Gln
Gln	Leu	Ile	980 Arg	Ala	Ala	Glu	Ile	985 Arg	Ala	Ser	Ala	Asn	990 Leu	Ala	Ala
Thr	Lys	995 Met	Ser	Glu	Cys	Val	1000 Leu) Gly	Gln	Ser	Lys	100 Arg	5 Val	Asp	Phe
Cvs	1010 GJv) Lvs	Glv	Tvr	His	1019 Leu	5 Met	Ser	Phe	Pro	102 Gln	0 Ala	Ala	Pro	His
1025	5 5	- 49	σ±y	- Y L	103	0	110 L	Det	1116	103	5	лıd	тца		1040
Gly	Val	Val	Phe	Leu 104!	His 5	Val	Thr	Tyr	Val 1050	Pro)	Ser	Gln	Glu	Arg 1055	Asn 5
Phe	Thr	Thr	Ala 1060	Pro)	Ala	Ile	Сув	His 1065	Glu 5	Gly	Lys	Ala	Ty r 1070	Phe)	Pro
Arg	Glu	Gly 107	Val 5	Phe	Val	Phe	Asn 1080	Gly	Thr	Ser	Trp	Phe 108	Ile 5	Thr	Gln
Arg	Asn 109(Phe)	Phe	Ser	Pro	Gln 1095	Ile 5	Ile	Thr	Thr	Asp 110	Asn 0	Thr	Phe	Val
Ser 1105	Gly	Asn	Cys	Asp	Val 1110	Val 0	Ile	Gly	Ile	Ile 111	Asn 5	Asn	Thr	Val	Ty r 1120
Asp	Pro	Leu	Gln	Pro 112	Glu 5	Leu	Asp	Ser	Phe 1130	Lys	Glu	Glu	Leu	Asp 1135	Lys
Tyr	Phe	Lys	Asn 114(His)	Thr	Ser	Pro	Asp 1145	Val	Asp	Leu	Gly	Asp 115(Ile)	Ser
Gly	Ile	Asn 115	Ala 5	Ser	Val	Val	Asn 116(Ile)	Gln	Glu	Glu	Ile 116	Asp	Arg	Leu
Asn	Glu 1170	Val	Ala	Lys	Asn	Leu 117'	Asn	Glu	Ser	Leu	Ile 118	Asp 0	Leu	Gln	Glu
Leu	Gly	Lys	Tyr	Glu	Gln	Tyr	Ile	Lys	Trp	Pro	Trp	Tyr	Val	Trp	Leu
Gly	Phe	Ile	Ala	Gly	Leu	Ile	Ala	Ile	Val	Met	Val	Thr	Ile	Leu	Leu
-				-											

1205 1210 1215 Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys 1220 1225 1230 Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1235 1240 1245 Gly Val Lys Leu His Tyr Thr 1250 1255 <210> SEO ID NO 50 <211> LENGTH: 3768 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus BJ01 <400> SEOUENCE: 50 atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga ccggtgcacc 60 acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat gaggggggtt 120 tactatcctg atgaaatttt tagatcagac actctttatt taactcagga tttatttctt 180 ccattttatt ctaatgttac agggtttcat actattaatc atacgtttga caaccctgtc 240 atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt tgtccgtggt 300 tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat taacaattct 360 actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaacccttt ctttgctgtt 420 tctaaaccca tgggtacaca gacacatact atgatattcg ataatgcatt taattgcact 480 ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg taattttaaa 540 cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta taagggctat 600 caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa acctatttt 660 aagttgeete ttggtattaa cattacaaat tttagageea ttettacage etttteacet 720 780 gctcaagaca cttggggcac gtcagctgca gcctattttg ttggctattt aaagccaact acatttatqc tcaaqtatqa tqaaaatqqt acaatcacaq atqctqttqa ttqttctcaa 840 aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa aggaatttac 900 cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc taatattaca 960 aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt ctatgcatgg 1020 gagagaaaaa aaatttctaa ttgtgttgct gattactctg tgctctacaa ctcaacattt 1080 ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct ttgcttctcc 1140 aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat agcgccagga 1200 caaactggtg ttattgctga ttataattat aaattgccag atgatttcat gggttgtgtc 1260 cttgcttgga atactaggaa cattgatgct acttcaactg gtaattataa ttataaatat 1320 aggtatetta gacatggcaa gettaggeee tttgagagag acatatetaa tgtgeettte 1380 tcccctgatg gcaaaccttg caccccacct gctcttaatt gttattggcc attaaatgat 1440 tatggttttt acaccactac tggcattggc taccaacctt acagagttgt agtactttct 1500 tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac tgaccttatt 1560 aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt gttaactcct 1620 tetteaaaga gattteaace attteaacaa tttggeegtg atgtttetga ttteactgat 1680 tccgttcgag atcctaaaac atctgaaata ttagacattt caccttgctc ttttgggggt 1740

gtaagtgtaa	ttacacctgg	aacaaatgct	tcatctgaag	ttgctgttct	atatcaagat	1800
gttaactgca	ctgatgtttc	tacagcaatt	catgcagatc	aactcacacc	agcttggcgc	1860
atatattcta	ctggaaacaa	tgtattccag	actcaagcag	gctgtcttat	aggagctgag	1920
catgtcgaca	cttcttatga	gtgcgacatt	cctattggag	ctggcatttg	tgctagttac	1980
catacagttt	ctttattacg	tagtactagc	caaaaatcta	ttgtggctta	tactatgtct	2040
ttaggtgctg	atagttcaat	tgcttactct	aataacacca	ttgctatacc	tactaacttt	2100
tcaattagca	ttactacaga	agtaatgcct	gtttctatgg	ctaaaacctc	cgtagattgt	2160
aatatgtaca	tctgcggaga	ttctactgaa	tgtgctaatt	tgcttctcca	atatggtagc	2220
ttttgcacac	aactaaatcg	tgcactctca	ggtattgctg	ctgaacagga	tcgcaacaca	2280
cgtgaagtgt	tcgctcaagt	caaacaaatg	tacaaaaccc	caactttgaa	atattttggt	2340
ggttttaatt	tttcacaaat	attacctgac	cctctaaagc	caactaagag	gtcttttatt	2400
gaggacttgc	tctttaataa	ggtgacactc	gctgatgctg	gcttcatgaa	gcaatatggc	2460
gaatgcctag	gtgatattaa	tgctagagat	ctcatttgtg	cgcagaagtt	caatggactt	2520
acagtgttgc	cacctctgct	cactgatgat	atgattgctg	cctacactgc	tgctctagtt	2580
agtggtactg	ccactgctgg	atggacattt	ggtgctggcg	ctgctcttca	aatacctttt	2640
gctatgcaaa	tggcatatag	gttcaatggc	attggagtta	cccaaaatgt	tctctatgag	2700
aaccaaaaac	aaatcgccaa	ccaatttaac	aaggcgatta	gtcaaattca	agaatcactt	2760
acaacaacat	caactgcatt	gggcaagctg	caagacgttg	ttaaccagaa	tgctcaagca	2820
ttaaacacac	ttgttaaaca	acttagctct	aattttggtg	caatttcaag	tgtgctaaat	2880
gatatccttt	cgcgacttga	taaagtcgag	gcggaggtac	aaattgacag	gttaattaca	2940
ggcagacttc	aaagccttca	aacctatgta	acacaacaac	taatcagggc	tgctgaaatc	3000
agggcttctg	ctaatcttgc	tgctactaaa	atgtctgagt	gtgttcttgg	acaatcaaaa	3060
agagttgact	tttgtggaaa	gggctaccac	cttatgtcct	tcccacaagc	agccccgcat	3120
ggtgttgtct	tcctacatgt	cacgtatgtg	ccatcccagg	agaggaactt	caccacagcg	3180
ccagcaattt	gtcatgaagg	caaagcatac	ttccctcgtg	aaggtgtttt	tgtgtttaat	3240
ggcacttctt	ggtttattac	acagaggaac	ttcttttctc	cacaaataat	tactacagac	3300
aatacatttg	tctcaggaaa	ttgtgatgtc	gttattggca	tcattaacaa	cacagtttat	3360
gatectetge	aacctgagct	tgactcattc	aaagaagagc	tggacaagta	cttcaaaaat	3420
catacatcac	cagatgttga	tcttggcgac	atttcaggca	ttaacgcttc	tgtcgtcaac	3480
attcaaaaag	aaattgaccg	cctcaatgag	gtcgctaaaa	atttaaatga	atcactcatt	3540
gaccttcaag	aattgggaaa	atatgagcaa	tatattaaat	ggccttggta	tgtttggctc	3600
ggcttcattg	ctggactaat	tgccatcgtc	atggttacaa	tcttgctttg	ttgcatgact	3660
agttgttgca	gttgcctcaa	gggtgcatgc	tcttgtggtt	cttgctgcaa	gtttgatgag	3720
gatgactctg	agccagttct	caagggtgtc	aaattacatt	acacataa		3768

<210> SEQ ID NO 51 <211> LENGTH: 1255 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus BJ01

<400> SEQUENCE: 51

Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Суз	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	Ala	Pro	Asn	Tyr 30	Thr	Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg
Ser	Авр 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Asp	Asn	Pro	Val 80
Ile	Pro	Phe	Lys	A sp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	L y s 110	Ser	Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Суз
Asn	Phe 130	Glu	Leu	Cys	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met
Gly 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Cys	Thr 160
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Leu 170	Asp	Val	Ser	Glu	L y s 175	Ser
Gly	Asn	Phe	L y s 180	His	Leu	Arg	Glu	Phe 185	Val	Phe	Lys	Asn	L y s 190	Asp	Gly
Phe	Leu	Ty r 195	Val	Tyr	Lys	Gly	Ty r 200	Gln	Pro	Ile	Asp	Val 205	Val	Arg	Asp
Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Lys	Leu	Pro	Leu
Gly 225	Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240
Ala	Gln	Asp	Thr	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr
Leu	Lys	Pro	Thr 260	Thr	Phe	Met	Leu	L y s 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile
Thr	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	Lys	Сув
Ser	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Ty r 300	Gln	Thr	Ser	Asn
Phe 305	Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Asn	Leu	Cys	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Lys	Phe	Pro 335	Ser
Val	Tyr	Ala	Trp 340	Glu	Arg	Lys	Lys	Ile 345	Ser	Asn	Cys	Val	Ala 350	Asp	Tyr
Ser	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	L y s 365	Cys	Tyr	Gly
Val	Ser 370	Ala	Thr	Lys	Leu	Asn 375	Asp	Leu	Cys	Phe	Ser 380	Asn	Val	Tyr	Ala
Asp 385	Ser	Phe	Val	Val	Lys 390	Gly	Asp	Asp	Val	Arg 395	Gln	Ile	Ala	Pro	Gl y 400

-continued

Gln	Thr	Gly	Val	Ile 405	Ala	Asp	Tyr	Asn	Ty r 410	Lys	Leu	Pro	Asp	Asp 415	Phe
Met	Gly	Cys	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser
Thr	Gly	Asn 435	Tyr	Asn	Tyr	Lys	Ty r 440	Arg	Tyr	Leu	Arg	His 445	Gly	Lys	Leu
Arg	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
L y s 465	Pro	Cys	Thr	Pro	Pro 470	Ala	Leu	Asn	Cys	Ty r 475	Trp	Pro	Leu	Asn	A sp 480
Tyr	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Val	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Сув	Gly
Pro	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Cys	Val 525	Asn	Phe	Asn
Phe	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	Lys	Arg
Phe 545	Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	A sp 560
Ser	Val	Arg	Asp	Pro 565	Lys	Thr	Ser	Glu	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Суз
Ser	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp	Val	Asn	Cys	Thr	Asp	Val	Ser	Thr
Ala	Ile	His	Ala	Asp	Gln	Leu	Thr	Pro	Ala	Trp	Arg	Ile	Tyr	Ser	Thr
Gly	610 Asn	Asn	Val	Phe	Gln	615 Thr	Gln	Ala	Gly	Cys	620 Leu	Ile	Gly	Ala	Glu
625 His	Val	Asp	Thr	Ser	630 Tyr	Glu	Cys	Asp	Ile	635 Pro	Ile	Gly	Ala	Gly	640 Ile
Сув	Ala	Ser	Tyr	645 His	Thr	Val	Ser	Leu	650 Leu	Arg	Ser	Thr	Ser	655 Gln	Lys
Ser	Ile	Val	660 Ala	Tyr	Thr	Met	Ser	665 Leu	Glv	Ala	Asp	Ser	670 Ser	Ile	- Ala
Tvr	Ser	675 Asn	Asn	- <i>1-</i> Thr	 T1e	Ala	680 Tle	Pro	<i>1</i>	Asn	P Phe	685 Ser	TIP	Ser	Tle
-y_ Th~	690	лыі с1	Mol	Mot	TTG	695 Vol	116	FIO Mot	711L	Luc	700	Det	110	Der	116
rnr 705	INT	GIU	vai	riet	Pro 710	vai	5er	riet	AIA	ц у з 715	Thr	ьer	vai	Asp	720
Asn	Met	Tyr	Ile	C y s 725	Gly	Asp	Ser	Thr	Glu 730	Cys	Ala	Asn	Leu	Leu 735	Leu
Gln	Tyr	Gly	Ser 740	Phe	Cys	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760	Arg	Glu	Val	Phe	Ala 765	Gln	Val	Lys
Gln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Tyr	Phe	Gly 780	Gly	Phe	Asn	Phe
Ser 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	Lys	Arg	Ser	Phe	Ile 800
Glu	Asp	Leu	Leu	Phe	Asn	Lys	Val	Thr	Leu	Ala	Asp	Ala	Gly	Phe	Met

-continued

					805					810					815	
Ly	s	Gln	Tyr	Gly 820	Glu	Сув	Leu	Gly	As p 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
Су	s .	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845	Leu	Leu	Thr
Asj	p.	Asp 850	Met	Ile	Ala	Ala	Ty r 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Th: 86	r. 5	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Al	al	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Va	1 :	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lys	Ala
Il	e	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Ly	s :	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Va 94	1 : 5	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
Asj	р	Ile	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Asp
Ar	g :	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
Gl	n i	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000	Arg	Ala	Ser	Ala	Asn 1005	Leu	Ala	Ala
Th	r	L y s 1010	Met	Ser	Glu	Cys	Val 1015	Leu 5	Gly	Gln	Ser	L y s 1020	Arg)	Val	Asp	Phe
С у 10	s 25	Gly	Lys	Gly	Tyr	His 103	Leu 0	Met	Ser	Phe	Pro 103!	Gln	Ala	Ala	Pro	His 1040
Gl	у,	Val	Val	Phe	Leu 104	His	Val	Thr	Tyr	Val	Pro	Ser	Gln	Glu	Arg	Asn
Ph	e '	Thr	Thr	Ala	Pro	Ala	Ile	Cys	His	Glu	Gly	Lys	Ala	Ty r	Phe	Pro
Ar	g i	Glu	Gly	Val	Phe	Val	Phe	Asn	Gly	Thr	Ser	Trp	Phe	Ile	Thr	Gln
Ar	g.	Asn	Phe	Phe	Ser	Pro	Gln	Ile	, Ile	Thr	Thr	Asp	Asn	, Thr	Phe	Val
Se:	r	Gly	, Asn	Cys	Asp	Val	Val	Ile	Gly	Ile	Ile	Asn	Asn	Thr	Val	Tyr
11 Asj	о5 р :	Pro	Leu	Gln	Pro	Glu	u Leu	Asp	Ser	Phe	Lys	Glu	Glu	Leu	Asp	Lys
ту	r :	Phe	Lys	Asn	His	o Thr	Ser	Pro	Asp	Val	Asp	Leu	Gly	Asp	II35	Ser
Gl	у	Ile	Asn	II4(Ala	Ser	Val	Val	Asn	II4	Gln	Lys	Glu	Ile	Asp	Arg	Leu
As	n	Glu	1155 Val	Ala	Lys	Asn	Leu	1160 Asn	Glu	Ser	Leu	Ile	1165 Asp	Leu	Gln	Glu
Le	u	1170 Gly) Lys	Tyr	Glu	Gln	1175 Ty r	Ile	Lys	Trp	Pro	1180 Trp	Tyr	Val	Trp	Leu
11 Gl;	85 y :	Phe	Ile	Ala	Gly	119 Leu	0 Ile	Ala	Ile	Val	1199 Met	5 Val	Thr	Ile	Leu	1200 Leu
	-				120	5				1210)				1215	5

1225 1230 1220 Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1235 1240 1245 Gly Val Lys Leu His Tyr Thr 1250 1255 <210> SEQ ID NO 52 <211> LENGTH: 1269 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus Urbani <400> SEQUENCE: 52 atgtctgata atggacccca atcaaaccaa cgtagtgccc cccgcattac atttggtgga 60 cccacagatt caactgacaa taaccagaat ggaggacgca atgggggcaag gccaaaacag 120 cgccgacccc aaggtttacc caataatact gcgtcttggt tcacagctct cactcagcat 180 ggcaaggagg aacttagatt ccctcgaggc cagggcgttc caatcaacac caatagtggt 240 ccagatgacc aaattggcta ctaccgaaga gctacccgac gagttcgtgg tggtgacggc 300 aaaatgaaag agctcagccc cagatggtac ttctattacc taggaactgg cccagaagct 360 tcacttccct acggcgctaa caaagaaggc atcgtatggg ttgcaactga gggagccttg 420 aatacaccca aagaccacat tggcacccgc aatcctaata acaatgctgc caccgtgcta 480 caactteete aaqqaacaac attgecaaaa ggettetaeg cagagggaag cagaggegge 540 600 agtcaagcet ettetegete etcateacgt agtcgeggta attcaagaaa tteaacteet ggcagcagta ggggaaattc tcctgctcga atggctagcg gaggtggtga aactgccctc 660 720 gcgctattgc tgctagacag attgaaccag cttgagagca aagtttctgg taaaggccaa 780 caacaacaaq qccaaactqt cactaaqaaa tctqctqctq aqqcatctaa aaaqcctcqc caaaaacqta ctqccacaaa acaqtacaac qtcactcaaq catttqqqaq acqtqqtcca 840 gaacaaaccc aaggaaattt cggggaccaa gacctaatca gacaaggaac tgattacaaa 900 960 cattggccgc aaattgcaca atttgctcca agtgcctctg cattctttgg aatgtcacgc attggcatgg aagtcacacc ttcgggaaca tggctgactt atcatggagc cattaaattg 1020 gatgacaaag atccacaatt caaagacaac gtcatactgc tgaacaagca cattgacgca 1080 tacaaaacat tcccaccaac agagcctaaa aaggacaaaa agaaaaagac tgatgaagct 1140 cagcetttge egeagagaea aaagaageag eccaetgtga etettettee tgeggetgae 1200 atggatgatt tctccagaca acttcaaaat tccatgagtg gagcttctgc tgattcaact 1260 caggcataa 1269 <210> SEQ ID NO 53 <211> LENGTH: 422 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus Urbani <400> SEQUENCE: 53 Met Ser Asp Asn Gly Pro Gln Ser Asn Gln Arg Ser Ala Pro Arg Ile 10 Thr Phe Gly Gly Pro Thr Asp Ser Thr Asp Asn Asn Gln Asn Gly Gly 20 25 30

Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys

-continued

Arg	Asn	Gly 35	Ala	Arg	Pro	Lys	Gln 40	Arg	Arg	Pro	Gln	Gly 45	Leu	Pro	Asn
Asn	Thr 50	Ala	Ser	Trp	Phe	Thr 55	Ala	Leu	Thr	Gln	His 60	Gly	Lys	Glu	Glu
Leu 65	Arg	Phe	Pro	Arg	Gly 70	Gln	Gly	Val	Pro	Ile 75	Asn	Thr	Asn	Ser	Gly 80
Pro	Asp	Asp	Gln	Ile 85	Gly	Tyr	Tyr	Arg	Arg 90	Ala	Thr	Arg	Arg	Val 95	Arg
Gly	Gly	Asp	Gly 100	Lys	Met	Lys	Glu	Leu 105	Ser	Pro	Arg	Trp	Ty r 110	Phe	Tyr
Tyr	Leu	Gly 115	Thr	Gly	Pro	Glu	Ala 120	Ser	Leu	Pro	Tyr	Gly 125	Ala	Asn	Lys
Glu	Gly 130	Ile	Val	Trp	Val	Ala 135	Thr	Glu	Gly	Ala	Leu 140	Asn	Thr	Pro	Lys
Asp	His	Ile	Gly	Thr	Arg	Asn	Pro	Asn	Asn	Asn	Ala	Ala	Thr	Val	Leu 160
Gln	Leu	Pro	Gln	Gly	Thr	Thr	Leu	Pro	Lys	Gly	Phe	Tyr	Ala	Glu	Gly
Ser	Arg	Gly	Gly	165 Ser	Gln	Ala	Ser	Ser	170 Arg	Ser	Ser	Ser	Arg	1/5 Ser	Arg
Gly	Asn	Ser	180 Arg	Asn	Ser	Thr	Pro	185 Gly	Ser	Ser	Arg	Gly	190 Asn	Ser	Pro
Ala	Arq	195 Met	Ala	Ser	Glv	Gly	200 Gl y	Glu	Thr	Ala	Leu	205 Ala	Leu	Leu	Leu
Т.еп	210	Arg	Leu	Aen	Glr	215	Glu	Ser	Lue	Val	220 Ser	Glv	Lve	Glv	Gln
225	чар	Arg	Leu	ASI	230	Leu	GIU	ser	- тув	235	ber	сту	цув	сту	240
Gln	Gln	Gln	Gly	Gln 245	Thr	Val	Thr	Lys	L y s 250	Ser	Ala	Ala	Glu	Ala 255	Ser
Lys	Lys	Pro	Arg 260	Gln	Lys	Arg	Thr	Ala 265	Thr	Lys	Gln	Tyr	Asn 270	Val	Thr
Gln	Ala	Phe 275	Gly	Arg	Arg	Gly	Pro 280	Glu	Gln	Thr	Gln	Gly 285	Asn	Phe	Gly
Asp	Gln 290	Asp	Leu	Ile	Arg	Gln 295	Gly	Thr	Asp	Tyr	L y s 300	His	Trp	Pro	Gln
Ile 305	Ala	Gln	Phe	Ala	Pro 310	Ser	Ala	Ser	Ala	Phe 315	Phe	Gly	Met	Ser	A rg 320
Ile	Gly	Met	Glu	Val 325	Thr	Pro	Ser	Gly	Thr 330	Trp	Leu	Thr	Tyr	His 335	Gly
Ala	Ile	Lys	Leu 340	Asp	Asp	Lys	Asp	Pro 345	Gln	Phe	Lys	Asp	Asn 350	Val	Ile
Leu	Leu	Asn 355	Lys	His	Ile	Asp	Ala 360	Tyr	Lys	Thr	Phe	Pro 365	Pro	Thr	Glu
Pro	Lys	Lys	Asp	Lys	Lys	Lys 375	Lys	Thr	Asp	Glu	Ala	Gln	Pro	Leu	Pro
Gln	Arg	Gln	Lys	Lys	Gln	Pro	Thr	Val	Thr	Leu	Leu	Pro	Ala	Ala	Asp
J85 Met	Asp	Asp	Phe	Ser	390 Arg	Gln	Leu	Gln	Asn	595 Ser	Met	Ser	Gly	Ala	400 Ser
Ala	Asp	Ser	Thr	405 Gln	Ala				410					415	
			420												

<210> SEQ ID NO 54 <211> LENGTH: 1269 <212> TYPE: DNA <213> ORGANISM: SARS coronavirus HB						
<400> SEQUENCE: 54						
atgtctgata atggacccca atcaaaccaa cgtagtgccc cccgcattac atttggtgga	60					
cccacagatt caactgacaa taaccagaat ggaggacgca atggggcaag gccaaaacag	120					
cgccgacccc aaggtttacc caataatact gcgtcttggt tcacagctct cactcagcat	180					
ggcaaggagg aacttagatt ccctcgaggc cagggcgttc caatcaacac caatagtggt	240					
ccagatgacc aaattggcta ctaccgaaga gctacccgac gagctcgtgg tggtgacggc	300					
aaaatgaaag ageteageee cagatggtae ttetattaee taggaaetgg eecagaaget	360					
tcacttccct acggcgctaa caaagaaggc atcgtatggg ttgcaactga gggagccttg	420					
aatacaccca aagaccacat tggcacccgc aatcctaata acaatgctgc caccgtgcta	480					
caactteete aaggaacaac attgeeaaa ggettetaeg cagagggaag cagaggegge	540					
agtcaageet ettetegete etcateacgt agtegeggta atteaagaaa tteaaeteet	600					
ggcagcagta ggggaaattc tcctgctcga atggctagcg gaggtggtga aactgccctc	660					
gcgctattgc tgctagacag attgaaccgg cttgagagca aagtttctgg taaaggccaa	720					
caacaacaag gccaaactgt cactaagaaa tctgctgctg aggcatctaa aaagcctcgc	780					
caaaaacgta ctgccacaaa acagtacaac gtcactcaag catttgggag acgtggtcca	840					
gaacaaaccc aaggaaattt cggggaccaa gacctaatca gacaaggaac tgattacaaa	900					
cattggccgc aaattgcaca atttgctcca agtgcctctg cattctttgg aatgtcacgc	960					
attggcatgg aagtcacacc ttcgggaaca tggctgactt atcatggagc cattaaattg	1020					
gatgacaaag atccacaatt caaagacaac gtcatactgc tgaacaagca cattgacgca	1080					
tacaaaacat tcccaccaac agagcctaaa aaggacaaaa agaaaaagac tgatgaagct	1140					
cagcetttge egcagagaea aaagaageag eccaetgtga etettettee tgeggetgae	1200					
atggatgatt tctccagaca acttcaaaat tccatgagtg gagcttctgc tgattcaact	1260					
caggcataa	1269					
<210> SEQ ID NO 55 <211> LENGTH: 422 <212> TYPE: PRT <213> ORGANISM: SARS coronavirus HB						
<400> SEQUENCE: 55						
Met Ser Asp Asn Gly Pro Gln Ser Asn Gln Arg Ser Ala Pro Arg Ile 1 5 10 15						
Thr Phe Gly Gly Pro Thr Asp Ser Thr Asp Asn Asn Gln Asn Gly Gly 20 25 30						
Arg Asn Gly Ala Arg Pro Lys Gln Arg Arg Pro Gln Gly Leu Pro Asn 35 40 45						
Asn Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lys Glu Glu 50 55 60						
Leu Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asn Thr Asn Ser Gly65707580						
Pro Asp Asp Gln Ile Gl y Tyr Tyr Arg Arg Ala Thr Arg Arg Ala Arg 85 90 95						
- ~ ~	nt	- 1	n	11	ρ	d
-------	----	-----	---	-----	---	---
-00				. u	-	~

Gly	Gly	Asp	Gly 100	Lys	Met	Lys	Glu	Leu 105	Ser	Pro	Arg	Trp	Ty r 110	Phe	Tyr
Tyr	Leu	Gl y 115	Thr	Gly	Pro	Glu	Ala 120	Ser	Leu	Pro	Tyr	Gl y 125	Ala	Asn	Lys
Glu	Gly 130	Ile	Val	Trp	Val	Ala 135	Thr	Glu	Gly	Ala	Leu 140	Asn	Thr	Pro	Lys
Asp 145	His	Ile	Gly	Thr	Arg 150	Asn	Pro	Asn	Asn	Asn 155	Ala	Ala	Thr	Val	Leu 160
Gln	Leu	Pro	Gln	Gly 165	Thr	Thr	Leu	Pro	L y s 170	Gly	Phe	Tyr	Ala	Glu 175	Gly
Ser	Arg	Gly	Gly 180	Ser	Gln	Ala	Ser	Ser 185	Arg	Ser	Ser	Ser	Arg 190	Ser	Arg
Gly	Asn	Ser 195	Arg	Asn	Ser	Thr	Pro 200	Gly	Ser	Ser	Arg	Gl y 205	Asn	Ser	Pro
Ala	A rg 210	Met	Ala	Ser	Gly	Gl y 215	Gly	Glu	Thr	Ala	Leu 220	Ala	Leu	Leu	Leu
Leu 225	Asp	Arg	Leu	Asn	Arg 230	Leu	Glu	Ser	Lys	Val 235	Ser	Gly	Lys	Gly	Gln 240
Gln	Gln	Gln	Gly	Gln 245	Thr	Val	Thr	Lys	L y s 250	Ser	Ala	Ala	Glu	Ala 255	Ser
Lys	Lys	Pro	Arg 260	Gln	Lys	Arg	Thr	Ala 265	Thr	Lys	Gln	Tyr	Asn 270	Val	Thr
Gln	Ala	Phe 275	Gly	Arg	Arg	Gly	Pro 280	Glu	Gln	Thr	Gln	Gl y 285	Asn	Phe	Gly
Asp	Gln 290	Asp	Leu	Ile	Arg	Gln 295	Gly	Thr	Asp	Tyr	L y s 300	His	Trp	Pro	Gln
Ile 305	Ala	Gln	Phe	Ala	Pro 310	Ser	Ala	Ser	Ala	Phe 315	Phe	Gly	Met	Ser	Arg 320
Ile	Gly	Met	Glu	Val 325	Thr	Pro	Ser	Gly	Thr 330	Trp	Leu	Thr	Tyr	His 335	Gly
Ala	Ile	Lys	Leu 340	Asp	Asp	Lys	Asp	Pro 345	Gln	Phe	Lys	Asp	Asn 350	Val	Ile
Leu	Leu	Asn 355	Lys	His	Ile	Asp	Ala 360	Tyr	Lys	Thr	Phe	Pro 365	Pro	Thr	Glu
Pro	L y s 370	Lys	Asp	Lys	Lys	Lys 375	Lys	Thr	Asp	Glu	Ala 380	Gln	Pro	Leu	Pro
Gln 385	Arg	Gln	Lys	Lys	Gln 390	Pro	Thr	Val	Thr	Leu 395	Leu	Pro	Ala	Ala	Asp 400
Met	Asp	Asp	Phe	Ser 405	Arg	Gln	Leu	Gln	Asn 410	Ser	Met	Ser	Gly	Ala 415	Ser
Ala	Asp	Ser	Thr 420	Gln	Ala										

1. A method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising (a) an adjuvant; (b) a pharmaceutically acceptable excipient; and (c) at least one coronavirus S protein immunogen comprising an amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18, wherein said at least one

S protein immunogen is capable of eliciting a protective immune response against coronavirus.

2. The method according to claim 1 wherein the at least one coronavirus S protein immunogen is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, or SEQ ID NO:18.

3. The method according to claim 1 wherein the at least one coronavirus S protein immunogen is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO: 16, or SEQ ID NO:18.

4. The method according to claim 1 wherein the at least one coronavirus S protein immunogen further comprises a hydrophobic moiety.

5. The method according to claim 4 wherein the hydrophobic moiety is a hydrophobic polypeptide or a lipid.

6. The method according to claim 1 wherein the excipient is a liposome.

7. The method according to claim 1 wherein the adjuvant is a Proteosome or Protollin.

8. The method according to claim 1 wherein the adjuvant is alum, Freund's adjuvant, a Proteosome, or Protollin.

9. The method according to claim 1 wherein the adjuvant is Protollin.

10. The method according to claim 1 wherein at least two S protein immunogens are administered.

11. The method according to claim 1 wherein the at least one coronavirus S protein immunogen is linked to a second amino acid sequence.

12. The method according to claim 11 wherein the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein.

13. The method according to claim 12 wherein the second amino acid sequence is a tag or an enzyme.

14. The method according to claim 13 wherein the tag is a histidine tag.

15. The method according to claim 1 wherein the coronavirus infection is caused by a group 1 coronavirus, a group 2 coronavirus, a group 3 coronavirus, and a SARS group coronavirus.

16. The method according to claim 1 wherein the coronavirus infection is caused by at least two of a group 1 coronavirus, a group 2 coronavirus, a group 3 coronavirus, and a SARS group coronavirus.

17. The method according to claim 1 wherein the coronavirus infection is caused by a human coronavirus, and wherein the human coronavirus is SARS-CoV.

18. The method according to claim 1 wherein the composition is administered by a route selected from enteral, parenteral, transdermal, transmucosal, nasal, and inhalation.

19. The method according claim 1 wherein the composition is administered nasally.

20. The method according to claim 1 wherein the immune response comprises eliciting at least one antibody that specifically binds to the at least one coronavirus S protein immunogen.

21. A composition comprising (a) at least one coronavirus S protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; and (b) a Proteosome or Protollin, wherein said S protein immunogen is capable of eliciting a protective immune response.

22. The composition according to claim 21 the at least one coronavirus S protein immunogen comprises an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID

NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

23. The composition according to claim 21 the at least one coronavirus S protein immunogen comprises an amino acid sequence at least 80% identical to the amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

24. The composition according to claim 21 wherein the S protein immunogen further comprises a hydrophobic moiety.

25. The composition according to claim 24 wherein the hydrophobic moiety is a hydrophobic polypeptide or a lipid.

26. The composition according to claim 21 wherein the at least one S protein immunogen is linked to a second amino acid sequence.

27. The composition according to claim 26 wherein the at least one coronavirus S protein immunogen is fused to the second amino acid sequence to form a fusion protein.

28. The composition according to claim 26 wherein the second amino acid sequence is a tag or an enzyme.

29. The composition according to claim 28 wherein the second amino acid sequence is a histidine tag.

30. The composition according to claim 21 wherein the at least one coronavirus S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 2.

31. The composition according to 21 wherein the at least one coronavirus S protein immunogen comprises an amino acid sequence set forth in SEQ ID NO: 4.

32. The composition according to claim 21 further comprising a pharmaceutically acceptable excipient.

33. The composition according to claim 21, wherein the at least one S protein immunogen is fused in frame to at least one second S protein immunogen comprising an amino acid sequence selected from an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:26 to form a fusion protein.

34. A composition comprising (a) a Proteosome or Protollin; and (b) a multivalent fusion coronavirus immunogen polypeptide.

35. A method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof the composition according to claim 34.

36. A method for treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a composition comprising: (a) a Proteosome or Protollin; (b) at least one coronavirus S protein immunogen that comprises an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

37. The method according to claim 36 wherein the at least one coronavirus S protein immunogen is at least 90% identical to an amino acid sequence set forth in SEQ ID NO:2,SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26. **38**. The method according to claim 36 wherein the at least one coronavirus S protein immunogen is at least 80% identical to an amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

39. The method according to claim 36 wherein the at least one coronavirus S protein immunogen further comprises a hydrophobic moiety.

40. The method according to claim 39 wherein the hydrophobic moiety is a hydrophobic polypeptide or a lipid.

41. The method according to claim 36 wherein the at least one coronavirus S protein immunogen is linked to a second amino acid sequence.

42. The method according to claim 41 wherein the at least one coronavirus S protein irnmunogen is fused to the second amino acid sequence to form a fusion protein.

43. The method according to claim 41 wherein the second amino acid sequence is a tag or an enzyme.

44. The method according to claim 43 wherein the tag is a histidine tag.

45. The method according to claim 36 wherein the coronavirus infection is caused by at least one of a group 1 coronavirus, group 2 coronavirus, a group 3 coronavirus, and a SARS group coronavirus.

46. The method according to claim 36 wherein the coronavirus infection is caused by at least two of a group 1 coronavirus, group 2 coronavirus, group 3 coronavirus, and SARS group coronavirus.

47. The method according to claim 36 wherein the coronavirus infection is caused by a human coronavirus, wherein the human coronavirus is SARS-CoV.

48. The method according to claim 36 wherein the composition is administered by a route selected from enteral, parenteral, transdermal, transmucosal, nasal, and inhalation.

49. The method according to claim 36 wherein the composition is administered nasally.

50. The method according to claim 36 wherein the at least one coronavirus S protein immunogen comprises the amino acid sequence set forth in SEQ ID NO:2.

51. The method according to claim 36 wherein the at least one coronavirus S protein immunogen comprises the amino acid sequence set forth in SEQ ID NO:4.

52. The method according to claim 36 wherein the composition comprises Protollin and at least one coronavirus S protein immunogen, wherein the at least one coronavirus S protein immunogen comprises the amino acid sequence set forth in either SEQ ID NO:2 or SEQ ID NO:4.

* * * * *