Skip to main content

Data Communication in Electromagnetic Nano-networks for Healthcare Applications

  • Conference paper
  • First Online:
Mobile, Secure, and Programmable Networking (MSPN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11557))

Abstract

One of the most promising applications of nanotechnology is their use in health care scenarios to monitor, in real-time, several parameters inside the human body such as cancer biomarker detection, glucose level, etc. However, real-time medical parameters communication is constrained by the tiny size of nano-nodes and their extremely limited energy. Ongoing efforts in this area are in their very early stage of development. Therefore further research is required to propose a suitable communication model. In this paper, we study the deployment of nano-networks in a living biological environment, and we focus on communication protocols challenges that must be overcome. We also proposed a multi-hop data dissemination approach that transmits sensed data from nano-nodes moving inside an artery to an outside controller while optimizing energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunetti, F., Akyildiz, I., Blzquez, C.: Nanonetworks: a new communication paradigm. Comput. Netw.: Int. J. Comput. Telecommun. Netw. 52(12), 2260–2279 (2008)

    Article  Google Scholar 

  2. Akyildiz, I., Jornet, J.: Electromagnetic wireless nanosensor networks. Nano Commun. Netw. 1, 319 (2010)

    Article  Google Scholar 

  3. Akyildiz, I., Jornet, J.: The Internet of nano-things. IEEE Wirel. Commun. 17(6), 58–63 (2010)

    Article  Google Scholar 

  4. Moore, M., et al.: A design of a molecular communication system for nanomachines using molecular motors. In: Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2006), March 2006

    Google Scholar 

  5. Dragoman, M., Dragoman, D.: Graphene-based quantum electronics. Progress Quantum Electron. 33(6), 165–214 (2009)

    Article  Google Scholar 

  6. Rutherglen, C., Burke, P.: Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. Small 5(8), 884–906 (2009)

    Article  Google Scholar 

  7. Burke, P., Rutherglen, C., Yu, Z., Burke, P.: Nanotubes and Nanowires. World Scientific (2007)

    Google Scholar 

  8. Agoulmine, N., Kim, K., Kim, S., Rim, T., Lee, J.-S., Meyyappan, M.: Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wirel. Commun. 19(5), 42–51 (2012)

    Article  Google Scholar 

  9. Akyildiz, I., Jornet, J.: The Internet of nano-things. IEEE Wireless Commun. 17(6), 58–63 (2010)

    Article  Google Scholar 

  10. Boggia, G., Piro, G., Grieco, L.A.: On the design of an energy harvesting protocol stack for body area nano-networks. Nano Commun. Netw. 6(2), 74–84 (2014)

    Google Scholar 

  11. Akkari, N., Almasri, S., Pierobon, M., Jornet, J.M., Akyildiz, I.: A routing framework for energy harvesting wireless nanosensor networks in the terahertz band. Wirel. Netw. 20(5), 1169–1183 (2014)

    Article  Google Scholar 

  12. Piro, G., Grieco, L.A., Boggia, G., Camarda, P.: Nano-Sim: simulating electromagnetic-based nanonetworks in the network simulator 3. In: Proceedings of The SimuTools, pp. 203–210 (2013)

    Google Scholar 

  13. Grieco, L., Boggia, G., Piro, G., Camarda, P.: Simulating wireless nano sensor networks in the NS-3 platform. In: Proceedings of The Workshop on Performance Analysis and Enhancement of Wireless Networks, Barcelona, Spain (2013)

    Google Scholar 

  14. Oukhatar, A., Bakhouya, M., Ouadghiri, D.E., Zine-Dine, K.: Probabilistic Based Broadcasting for EM-based Wireless Nanosensor Networks. In: MoMM 2017, 4–6 December 2017

    Google Scholar 

  15. Hierold, C., Jungen, A., Stampfer, C., Helbling, T.: Nano electromechanical sensors based on carbon nanotubes. Sens. Actuators. A: Phys. 136(1), 51–61 (2007)

    Article  Google Scholar 

  16. Ji, L., et al.: Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for highcapacity lithium storage. Energy Environ. Sci. 4(9), 3611–3616 (2011)

    Article  Google Scholar 

  17. Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  Google Scholar 

  18. Wang, Z.L.: Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18(22), 3553–3567 (2008)

    Article  Google Scholar 

  19. Yonzon, C.R., Stuart, D.A., Zhang, X., McFarland, A.D., Haynes, C.L., Duyne, R.P.V.: Towards advanced chemical and biological nanosensors-an overview. Talanta 67(3), 438–448 (2005)

    Article  Google Scholar 

  20. Salem, A., Azem, A.M.A.: The effect of RBCs concentration in blood on the wireless communication in Nano-networks in the THz band. Nano Commun. Netw. 18, 34–43 (2018)

    Article  Google Scholar 

  21. Kardi, A., Touati, H.: NDVN : named data for vehicular networking. Int. J. Eng. Res. Technol. IJERT 4(4) (2015)

    Google Scholar 

  22. Nakano, T., Moore, M.J., Wei, F., Vasilakos, A.V., Shuai, J.: Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11(2), 135–148 (2012)

    Article  Google Scholar 

  23. Aboud, A., Touati, H.: Geographic interest forwarding in NDN-based wireless sensor networks. In: Proceedings of the 13th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), November 2016

    Google Scholar 

  24. Aboud, A., Touati, H., Hnich, B.: Efficient forwarding strategy in a NDN-based Internet of things. Cluster Comput. (2018). https://doi.org/10.1007/s10586-018-2859-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Ferjani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferjani, H., Touati, H. (2019). Data Communication in Electromagnetic Nano-networks for Healthcare Applications. In: Renault, É., Boumerdassi, S., Leghris, C., Bouzefrane, S. (eds) Mobile, Secure, and Programmable Networking. MSPN 2019. Lecture Notes in Computer Science(), vol 11557. Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22885-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22884-2

  • Online ISBN: 978-3-030-22885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics